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Solutions

2.1

1.

(=)

Sequences and Convergence

For the three sequences given:

e | 1000 0.100 0.010 0.001
(@ N| 1 V10=3.16 +100=10 +/1000~ 31.6
® N| 1 100 10, 000 1,000, 000
) N| 1 e® =~ 8103 e 999

(a) Ifagiven N works for € = 0.001, then the same N works for larger €. We could use this N in all positions in the row.

(b) Any N works in this case; we could use N = 0 in all positions, for example.

(c) The number of digits in a number changes after 9, 99, 999, etc. So the second-row entries would be 9, 109 — 1,109 — 1,
and 109%° — 1.

(a) Set e = 0.1 and choose a corresponding IV as in the definition. All z,, with n > N lie in the desired interval.

(b) Set ¢ = 0.001 and choose a corresponding IV as in the definition. Then all z,, with n > N lie in (4.999,5.001), and
therefore exceed 4.999.

(¢) If we set € = 1 and choose a corresponding IV, then all z,, with n > N lie in (4,6). Thus it is possible that z,, > 6 only
for members of the finite set {z1, ©2,...zN}.
(a) Yes. The divergent sequence 3, 0, 3, 0, 3, 0, 3, 0, ... has infinitely many terms with value 3.
(b) No. If, say, {z,,} = 3 forall n > N, then this value of N works in the definition of convergence for any ¢ > 0.
Suppose that {z,} converges to L = 1000. Let ¢ = 1 and choose IV as in the definition of convergence. Then we have

Zn € (999,1001) for all n > N, which means that 1001 is an upper bound for these x,,. The remaining x,, form a finite set,
which is automatically bounded above. This contradicts the assumption of boundedness.

(a) Algebraic manipulation gives

lan — L| = 2_”_2’: 10
" 3n+5 3| 9n+15
and
10 10/e — 15
ont 15 <e — -—9 <n
Thus, for given ¢ > 0, the value N = L{w works in the definition. A formal proof resembles that in Example 2.

(b) The proofis like that for (a), except that now we have

899900 899900/ — 15
= —<n

oo = =g 715 <¢ <= 9

Thus N = %/6_15 works for any given e > 0.
(c) We’ll show ¢, — 0. Observe first that

lcn—L|:L<2—n=l
3n2+5 " 3n?  3n’
and
-2— <e — 3 <n.
3n 3e
Here’s the formal proof: Let € > 0 be given; set [V = % This N works, since if n > N then
len — L 2n 3<l=e.

=32+5 “3n “3N
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8.

11.

12.

13.

14.

15.
16.

17.

Formal proofs resemble those in the preceding problem. Following are sketches.

(a) The limit is 2/3. For given € > 0 we can use N = %'
(b) The limit is L = 2/3. Basic algebra gives
by — L] = 10—?Sinn S_S_'
In+3sinn+ 15~ 9n
(Convince yourself of the last inequality.) This implies that, for given ¢ > 0 we can use N = 8/(9¢).
(c) As in the preceding problem, ¢, — 0. Indeed,
2n

n— 0= 55 <2
len = 0] 3n?2+5  3n

and so, for given ¢ > 0 we can use N = 2/(3¢).
(a) We can check explicitly that 1.5' ~ 86.5 < 89 = fi1, and 1.5? &~ 129.7 < 144 = fy5. For the inductive step, note that
feq1 > 15T 15k =155 25 > 15871 . 1,52 = 155
as desired. (Note that the proof worked because 1 + 1.5 > 1.52. A similar result can be shown to hold if 1.5 is replaced

by any number b with 1 + b > b2.)
(b) Using technology one can check that n > 72 works.

(a) The first few terms are 1/1, 2/1, 3/2, 5/3, 8/5; the Fibonacci numbers appear as numerators and denominators.

(b) The claim is obviously true for n = 1. The inductive step is easy, too. Clearly, g, > 1 for all n, and 50 g1 = 1+1 [gn <
1+1/1=2.

(¢) Easy algebra is enough.

(a) For any given € > 0, we see
1 1
|z, —0l==<e <<= n>-.
n €

Thus the desired inequality holds for all n except those (finitely many) for which n < 1/e.

(b) Show that if z,, — 0 in the sense above, then z,, — 0 in the “official” sense defined in this section. Let ¢ > 0 be given.
By hypothesis, |, — 0| > ¢ holds for only finitely many n, and we can choose NV to the largest such value of n. This IV
works in the ordinary definition.

(¢) A sequence {z,,} does not converge to 0 if, for some ¢ > 0, there are infinitely many z,, with |z,| > c.
(d) A sequence {x,} does not converge to 0 if, for some ¢ > 0 and any number N, there is some z, with n > N and
|zn| > €.
The sequence {y, } converges to 212. To see why, notice that

lyn — 212| = [Bzy + 2 — 212| = 5 |z, — 42]

and so
€
5
For a given € > 0, therefore, we can set ¢/ = €/5, and choose IV that works for the sequence {z,} and €’. The same N does

what’s needed for {y,.}.

lyn —212| < ¢ = |z, —42| <

Every constant sequence has such a table.

A sequence has such a table if and only if the sequence is constant from the sixth term on: 6 = 7 = zg = .... (Sucha
sequence is called eventually constant.)

If 8 has decimal expansion 0.d;d2dadsds - . ., then the increasing sequence 0.dy, 0.d1da, 0.d1d2ds, 0.d1dadsdy, . . . converges
to 5.
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2.2

Working with Sequences

. Here is a sketch. For any constant ¢ # 0, we have

€
lcan —cal = [c|lan — a| < € <= |ap —a] < 7R
Now for any given € > 0, we can choose N so that |a, — a| < ¢/|c| for n > N. (Why can we do this?) This N “works” for
the given ¢ and the original sequence {ca,, }. (Assemble the pieces into an efficient proof.)

. Suppose z, — 0. To show |z,| — 0, let € > 0 be given. Because z,, — 0, we can choose N so that |z, — 0] = |zn]| < €

whenever n > N. The same N works for the sequence {|z,|}, because if » > N, then
llzn| = O = llzn|l = |2a| <,
as desired.

(a) The lemma says that there exist both rational and irrational sequences that tend to v/2, and that these can be chosen to be
monotone.

(b) One possibility is p, = v/2 + 1/n for all n.

(¢) One possibility comes from the infinite decimal approximation v/2 = 1.414213562...; wecanuse 1 = 1, 7o = 1.4,
r3 = 1.414, etc. (We need a little fix when a zero-digit comes along.) Another possibility, a bit less concrete, is to use the
fact that every interval contains rational numbers.

. The n = 1 (base) case is easy: s2 = 1.5 < 2 = s;. The inductive step is to show that if s, — s,—1 < 0, then 841 — 5, <0,

too. Doing so involves careful but straightforward algebra.

. For every positive integer 2 we have the estimate

1 1
V2 N

Sp =

==

Clearly, v/n — o0, and so s, — 00, too.

inequality means that ho > 1.5, hy > 2.0, hg > 2.5, ho1ggp > 501, etc.

. It is clear that {h,} is increasing, and the inequality hop, > hy + % implies that {h,,} is unbounded. Since h;y = 1, the

(a) Clearly, T;, < S, for all n, and both sequences appear to converge.
(b) Itis natural (and correct) to guess T, = 777. The inductive proof is straightforward.
= —_———

(c) We can use algebraic facts: T, =

(d) Observe that

_n_
n+1

1 1 1

n24+n " n2+n?2 2n?

for all n, and so S, < 27;, < 2 forall n > 1. Thus {T7,} is bounded above, and clearly increasing, so {T7,} converges.

(a) Let M > 0 be given. Since z,, — 0o, we can choose IV so z,, > M whenever n > N. But then also —z,, < —M when
n > N. Thus —z,, — —o0.

(b) Suppose z,, — oco. Let € > 0 be given; we need to find NV so n > N implies li’ =L <e Well,ifweset M =1/¢

Tn
then (since z,, — oo) we can choose N so n > N implies z,, > M = 1/e. But this implies 1/z,, < ¢, as desired.

(c) Suppose T, < O for all n. Then z, — —oo if and only if 1/z, — 0. This follows from parts (a) and (b): =, —

—00 = —Tnp — 0 —%—>0 <~ i—>0‘
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10.

11.

2.3

The inequality |,/an -3 | < |a, — 3| implies that
—|an — 3] < Van — V3 < |an — 3.

Since the left and right quantities tend to zero, so must the middle.
Proving the inequality I,/an - \/gl < |an — 3| involves multiplication and division by the “conjugate” expression |,/an +3 |

(a) The limit is 2/5.
(b) The sequence diverges to oo.
(¢) The sequence converges to 1/2.

(d) The sequence diverges to co. One strategy is to observe that "”Z’:;ann > ’i 7:24 =n-2.

Subsequences
(a) The converse says (falsely) that if {x,, } has a convergent subsequence, then {x,} is bounded. Counterexamples are easy
to find. The contrapositive says that if {z,, } has no convergent subsequence, then {x, } is unbounded.

(b) The BWT says that {y,, } has a convergent subsequence. The BWT also applies to {25}, but isn’t really needed, since it
is easy to see that z,, — 0. Thus, every subsequence of {2, } converges to zero.

(¢) If {z,,} is bounded, then the BWT guarantees that a convergent subsequence exists. If {z,} is unbounded, then
Lemma 2.13 applies. Both can occur, as they do in the sequence 1, 0, 2, 0, 3, 0, dots.

(a) The sequencel, 2, 3, 1, 2, 3, ... works.

(b) The sequence 1, —1, 1/2, —1/2,1/3, —1/3, ... works.

(¢) The sequence0, 1, 0, 2,0, 3, ... works.

(d) The sequence 1, 1, 1/2,2,1/3, 3, ... works.

(e) Thesequencel, 1,2,1,2,3,1, 2,3, 4, ... works.

(a) Given a sequence that lists the rationals, we can just form the subsequence of nonnegative rationals.

(b) Look at any two successive terms, say py and p2. Between these two rational numbers like other rationals. If the sequence
were monotone, these other rationals would lie between p; and po in the sequence.

(c) We can choose n; so that p,, = 1. Then we choose na with ng > ny and p,, > 2. Continuing this process completes
the proof; details are left to the reader.

Note that we can write the given subsequence in the form z,,, = T4241+%. Theorem 2.11, page 95, says that if z, — L, then
T, convergesto L, too. For the converse, suppose that <, — L. To show that z,, — L, let ¢ > 0 be given. By hypothesis we
can choose N so ng > N = |z,, — L| <e. Let Ny = N + 4241. This N; works; details are left to the reader.

2k I .
(a) Substituting n = 2k gives zor = 1’ which converges to one as k — co. Substituting n = 2k — 1 gives Tog—1 =
'
2k -1 . .
BT which converges to —1. With two different subsequence limits, {x,} must diverge.

(b) Consider any convergent subsequence Tn, , Tn,, Tny, Lny, - - -, With limit L. Since this sequence has infinitely many
terms, it must include either infinitely many even-indexed or infinitely many odd-indexed terms from the original sequence
{zy}. If there are, say, infinitely many even-indexed terms, then they form a new subsequence, which obviously tends to
one. But every subsequence of a convergent sequence tends to the same limit, so we must have L = 1.

(a) The sequence0, 3, 0, 3, 0, 3, ... is one example.

(b) The statement z,, — 3 means that, for every ¢ > 0, all but finitely many z,, are within ¢ of 3. Negating this definition
means that, for some ¢ > 0, infinitely many x,, are farther than ¢ from 3. These {zn}, taken in order, give the desired
subsequence.
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7. Since {z,} diverges, zg is not the limit. Negating the definition of convergence to zo means that, for some ¢ > 0, no N works
in the definition of convergence. We’ll use this to construct a sequence.

Because N = 1 doesn’t work in the definition, there is some term—call it ,,—for which |25, —zg| > e. Now consider
N = ny. But this N doesn’t work either, so there must be some term—call it ©,,,—for which ng > n; and |z, — xo| > €.
Continuing this process indefinitely gives the desired subsequence: n1 < nz < n3 < ... and |z, — zo] > € forall k.

8. (a) For M > 0, choose N such that z,, > M whenever n > N. The same N works for the subsequence {y, }, since if
k> N,thenng > k > N, and so z,,, > M, as desired.

(b) The contrapositive of Theorem 2.11(a) says that if some subsequence {zr, } does not converge to L, then the original
sequence {z,, } doesn’t converge to L either. This implies Theorem 2.11(c), because if L is any number, then at least one
subsequence fails to converge to L, and so L can’t be the limit.

9. If z,, — xg, then we know that every subsequence, and hence every monotone subsequence, must also converge to p.

The other implication is that if every monotone subsequence converges to xp, then x,, — o, too. We prove this by contradic-
tion.

If 2, does not converge to o, then for some ¢ > 0 there is a subsequence {n, } with |zn, — zo| > ¢ for all k. By Propo-
sition 2.12, there is a monotone subsequence {yy, } of {Zn, }. Now |zp, — zo| > € holds for all the z,,,, and so it certainly
holds for all the yp,,, too. In particular, yn, — %o is impossible, which contradicts our agsumption about monotone sequences.

10. Since =, — xg there are infinitely many n with |z, — zg] < 1/10. Choose any of these n to be n;. Similarly, there are
infinitely many n with |z, — xo| < 1/10%. Among these n, choose any one with n > n; to be ng. Similarly, we can choose
ng > ng such that |z,, — zo| < 1/103, and so on.

11. Both parts follow from unraveling the e~V definitions.

2.4  Cauchy Sequences
1. (a) Forgivene > 0 we can choose N = 2/¢. This N works because if m,n > N then |2, — | < |Tn|+ [2m| = 1+lc
s+5=¢c
(b) The sequence is not Cauchy. If we choose, say ¢ = 0.001, then no N works: if N is any positive number, no matter how
big, then withm = N + 1 and n = N + 2 we have |yn — ym| = 2/1234 > 0.001.
(c) The sequence is Cauchy. Note that if n > m, we have

2 = 2| = n__ m |_ n—m
T e+l m4+1] (n+1)(m+1)
n—"m n 1
< < — = —.
nm nm m

It follows that, for € > 0, we can choose N = 1/e.
(d) The sequence is Cauchy. If n > m, we have

| |= sinn sinm sinn sinm
Wn =Wml =031 " m2 1| T n2+l m2+1
2 2

3

~“m?+1 < w2
and 2/m? < eif m > /2/e. Thus, N = 1/2/e works in the definition.

2. For given € > 0, choose N7 such that |z, — Z»| < €/2 when n > m > Nj, and choose N2 such that |Ym — Yn} < €/2 when
n > m > Ny. The number N = max{N1, N} does what’s needed.

3. For ¢ > 0 choose N that works for ¢ in the sense of Definition 2.16. This same N works in the definition of convergence to
zero. To see why, let m > N be given. Then choose any n of the formn = 10%, with n > m. (This can certainly be done;
n = 10™ is one possibility.) Then we have n > m > N, and 50 |[Tm — Zn| = |#m — 0] < ¢, as desired.
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4. Set € = 1 (smaller ¢ works, too) and choose N as in the Cauchy definition. This N works in the problem, since if n > m > N
then |z, — Zm| < 1, which can occur for integers x,, and z, only if z, = Tp,.

5. (a) Any sequence of rationals tending to an irrational will do.

(b) Yes. The only Cauchy sequences of integers are eventually constant.

(¢) [0,1] is complete because if {z,, } is any Cauchy sequence in [0, 1}, then {x,} tends to some limit L. Because 0 < z,, <1
for all n, L lies in [0, 1], too.

(0, 1] is not complete; {1/n} is a Cauchy sequence in (0, 1], but its limit, zero, lies outside (0, 1].

6. (a) Forany m and n,
|yn — Ym| = |52n + 2 — 52, — 2| =5 |2, — T -
It follows that
€
g-

For a given ¢ > 0, therefore, we can set ¢ = ¢/5, and choose N that works for the sequence {z,} and €’. The same N
does what’s needed for {y,}.

]y'n - yml <e — |$n - mmi <

(b) If {z,} is Cauchy, then {z,,} converges, by Theorem 2.19. Now {5z, + 2} converges, too, by Theorem 2.5, page 83,
and so {5z, + 2} must also be Cauchy, again by Theorem 2.19.

7. Let € > 0 be given and set ¢’ = ¢/42. Because {a,} is Cauchy sequence there is some N such that |a, — am| < € whenever
n > N. This N works for the sequence {zy }; details left to you.
8. (a) The sequence is monotone only if the coin falls heads (or tails) forever.

(b) If the first six coin tosses show HT HT HT, then ag = 21/32, and it follows that all further a,,, and therefore the limit,
must lie in the interval [20/32,22/32].

(c) Foreverym, jan| <1+ 34+ 1+4 4+ + 57 <2.
9. Two numbers with the same first n decimal places can differ by no more than 10",

10. (a) By Theorem 2.19, the result is equivalent to the (known) fact that the product of convergent sequences is convergent.
(b) Suppose |z,,| < M; for all n and |y,| < M> for all n. Now choose N7 so

€
Tp — Tm| < —— when n>m> N
| n ml 2]\4—2 1,

and choose N3 such that

|Yn — Um] < Q_GM_I when n>m > N.

Now N = max{Ny, Na} does what’s needed, since if n > m > N, we have

]-'L'nyn - a:mym] < |xny'n, - -'L'nyml + ]wnym - xmyml < lxn[ |yn - ym| + |ym| ]xn — T

€ €
<M - M |z, — M — 4+ My—— =c¢.
S My Iyn Ym| + Mo |33 Tm| < 12]\4.1 + 221\/12 €
11. The key point is that, regardless of n,
1 1 1 1
gm+1 +2m+2 toeet o < om’

This fact can be parlayed into a proof.
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2.5

Series 101: Basic ldeas
(a) Sp = 0 for all n, and so the series converges to 0.
(b) S, = 42n for all n; this diverges (to 00).
(c) The partial sum sequence {S,} has the form —1, 0, —1, 0, ...; this diverges.
(d) Sp = &L for all n; this diverges (to co).
(e) The series is geometric, with 7 = 0.99, so S, = ll_f: = 100(1 — 0.99"), and we see that S,, — 100.
(f) Itis easy to show by induction that S,, = ;%7. Thus S, — 1.

(a) Since Han > % for all n and the right-hand sequence diverges to infinity, we must have Hz» — 00, too. Since {H,} has
a divergent subsequence, { H,, } must diverge, too.

(b) Suppose toward contradiction that H,, — H for some finite number H. Since {H2,} is a subsequence, we’d have
H,,, — H,too. But we also have Hy,, > % + H,; taking limits of both sides gives H > % + H, which is absurd.

(c) See almost any calculus text for the standard picture.

(8) Y_p; 779% converges by comparison to the geometric series pIraiE

() >pey ﬁkrl diverges by comparison to the divergent series > o ; ﬁ (Convince yourself that the comparison works.)
(©) Yoreq 3% ?f“ converges by comparison to the convergent geometric series Y po | %’,:—
(d) S0, £tz 3k2 t2 diverges by the nth term test: limy_.co #ﬁ 3 #0.

(a) Sp,=1—- which clearly tends to the limit 1.

=
(b) Here we get Sp = 1+ 5 — 35 — n+2,soS — 14+ 3asn— oo
(c) The pattern suggeststhat S, =1+ +... f5 -~y — s — " 55+ Asm — oo, the last ten terms all tend to

zero, so the limitis S =1+ 1 + ... Tlﬁ ~ 2.929.

Let 3" ax and 3 by, be series, and let Y ¢ be the “sum series,” defined by cx = ax + by for all k. Let A,, By, and Cp
denote the partial sums for these series. The key point is that—thanks to the commutative law for addition of finitely many
numbers—C,, = A, + By, for all n. It follows that if A,, — A and B, — B, then we must also have C;, — A + B, which is
what we wanted to prove.

(a) If r = 1, the series is justa + a + @ + . . ., and so S, = na, which clearly diverges.
If r = —1, the series is justa — a + a — ..., and so the successive S, have the forma, 0, @, 0, .. .; this, too, diverges.

(b) i. The sequence {r"+1} is a subsequence of {r"}, so both converge to the same place, L.

ii. Letz, = r"™. We know that =, — L; one of our theorems says rz, — L.

iii. The preceding parts say that L = rL; if r # 0, we must have L = 0.

iv. If0 < 7 < 1, then #™ — 0. (Hint: use a theorem about monotone sequences.) If 0 < r < 1, then r?tl < ™ for
all n, so the sequence is monotone decreasing and bounded below. Thus it converges, and the limit is zero by the
preceding part.

v. If =1 < r < 0, then |r| < 1, and so |r|* — O by the preceding part. Now we have —|r[* < 7 < |r|", and so the
middle limit is squeezed to zero.

vi. If [r| > 1, then clearly |r™| > 1 for all n. In particular, zero certainly isn’t the limit. Thus the sequence diverges.

(a) It is enough to show (i) if n > 1000 then S,, > Sigoo; (ii) if 7 > 1000 then Sy, < Si001. Claim (i) amounts to observing

that every string of the form
1 1 1 1

— =
1001 1002 + 1003 1000 +n
adds up to a positive result; group summands in pairs to see why. Claim (ii) holds because every string of the form

1 + 11 I 1
1002 1003 1004 1000 +n

has negative sum; again, group summands in pairs to see why.
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(b) For given € > 0 we can take any integer N > 1/e. Then |Sy — Sn1i1| = g <«

(c) For given ¢ > 0 choose N as in the preceding part. Then for n > m > N, we have both S, and S, between Sy and
Sn+1, and thus within ¢ of each other.

(a) Suppose > di/10 converges. By Theorem 2.22, 103 " di /10 = > di, converges, too, which contradicts our hypotheses.

(b) The product series Y crdy may converge or diverge. If, say, dx = 1 for all k and ¢ = 1/k?, then the product series
converges. But if d, = k forall k and ¢, =1/ 2% then the product series diverges.

(c) If A is constant then > Acy, converges by Theorem 2.22.
(d) Itis possible that d, < ¢y, for all k. This happens if, say, dr, = —1 and ¢;, = 0 for all £.
(a) Let A, and B, be the partial sums for ) aj, and ) by. The hypothesis boils down to the fact that for n > 42 we have

B, = An — A42 + Byo. Thus, the sequences {4, } and {B,} differ (for large n) by an additive constant, and so both
converge or both diverge.

(b) We know (see the preceding part) that B,, = A,, — A4z + Bap. Because by — ar = k?, we must have By — Ag2 =
Zk 1 2k? = 25585. Thus, B, = A, + 25585, and since A, — 100 we must have B,, — 25685.

10. Since > ax converges we must have ar — 0, so there must exist K such that 0 < a; < 1 for k > K. Hence aﬁ < ay, for

2.6

1.

k > K. 1t follows that the series > _ a? converges by comparison to the series > ai. (Note that the inequality a2 < ar might
not hold for £ < K. Do you see why this doesn’t matter?)

Series 102: Testing for Convergence and Estimating Limits
(@ S, m_lax;' converges by comparisonto " 5%
() >pey ﬁﬂk—_1 diverges; one approach is limit comparisonto y_p. ; %
©) >req 3% converges by comparison or limit comparison with the geometric series 3 ., §—:
(d) > e ;“,:2—*4'_24 diverges; use the nth term test.
@ >y ”}c—(,’k converges by the ratio test.

(®) >oae, I 30‘001 = converges absolutely. The absolute value series converges by comparison to the geometric series Y pe.; T 0001k

© >, m‘ﬁ diverges; one approach is limit comparison to 3 o | .

d) 322, % converges by the alternating series test.

2
(a) The ratio %ﬁs = ay, tends to zero (by the kth term test), and so Y a? converges.

b) Y ap =3 ﬁ, then 3 a? diverges. If 3 ar = Y 7, then 3" a2 converges.

. Suppose toward contradiction that Y ax converges. Since ag/br — oo (see the hint), we have bx/ar — 0, and the limit

comparison test implies that > by converges, a contradiction.

. If 3" by converges to B, then Y ay converges to B — Zszl br + Ele aj. This is similar to a problem in the preceding

section, where K = 42.

. One can show easily (e.g., by induction) that k! > 2¥ for k& > 3. Thus, 1/k! < 1/2* forall k > 3, and hence }_, 1/k! converges

by comparisonto 3 1/2%,

. Note that the sum

Ly o
Vi V2

Since /n — oo, we must have S,, — oo, too.

Sp =
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10.

11.

3.1

a) The series converges by comparison to ° | ==, which converges to 2.
ges by P k=172 g
o0 1 [e e} 1 1
(b) We have Rio = D ;"1 se=177 < Doge11 35T = 79

(¢) Wehave S = Syo+ R0 < 1.26255—{—21—9 =2 1.26450. This means that S lies somewhere in the interval [1.26255, 1, 26450)].

(a) The series converges absolutely by comparison to * -, which converges to 2.
y by comp k=173 8

(b) Let S be the limit. The alternating series theorem says that |.S,, — S| < ﬁ The right side is the size of the (n + 1)th
term, which is less than 0.001 if n > 10. This means that the limit lies between S19 =~ 0.29365 and S11 = 0.29462.

(c) The partial sum Sjgg can differ from S by no more than the size of the next term, which is ﬁ This corresponds to
something like 30-digit accuracy.

(a) See your favorite calculus text.

(b) We need to choose n so R, < 0.001. By the given inequality, this holds if n is large enough so that [ :° % < 0.001.
0 dx

A calculus calculation shows that fn o = 2—71;7, and the last quantity is less than 0.001 if n > 23. This means that

So3 = 1.2012 is within 0.001 of the true answer.

Limits of Functions

1. Both parts are easy exercises with the definition. In (a) we can choose any ¢ for given €. In (b) we can choose § = e.

2.

4.

(a) liml(Zx + 3) = 5. Note that | f(z) — 5| = 2, |z — 1|. It follows that for given ¢ > 0 we can set § = ¢/2.
Tr—

2

(b) Factoring the numerator gives lim z = lim (z — 1) = —2. (For given ¢ > O we can set § = ¢.)
z——-1 +1 z——1

2

. . . T+ zT—2
(¢) Factoring the numerator gives hrn1
xr—

= liml(a; +2) = 3. (For given ¢ > 0 we can set § = €.)

(d) The limit is zero. To see why, note that

2+sinz 3
@) -0l = o 22| < oy £

3 —cosz

(The factor 3/2 comes from considering the possible sizes of numerator and denominator.) It follows that for given ¢ > 0,
we can set § = 2¢/3.

(a) For f(z) = x?, we have 11122 flz) = 1ir£12 x® = 42 = f(42), so the condition does hold at a = 42.
T— T—r

(b) For f(z) = z? and any input a, we have lim f(z) = lim z? = a? = f(a), so the condition holds at every a.

(c) Since the function f(z) = m2_24 is not defined at ¢ = 2, the condition can’t possibly hold.

(d) We have lim f(z) = lim xz___4 = 32—_4 = f(3), as desired.
z—3 z—3 T — 2 3—1
(e) Note that a = 0 is an endpoint of the domain. Also, we know mllrng flz) = mligﬁ vz = 0= f(0), so the condition holds
in the one-sided sense.

(f) We have lim f(z) = lim |z| = |a| = f(a) forall a.
T—a T—a

(g) Theorem 3.3, Page 138, assures that lim f(z) = lim (1 + 7z + ez® + mez®) = 1 + ma + ea® + mea® = f(a), so the
r—a T—a
condition holds for all a.

Let {x, } be any sequence with z,, — a and z,, # a for all n. Then {f(z,)}, {g(2n)}, and {h(z,)} are all sequences, and the
hypotheses imply that (i) f(z») < g(z,) < h(zy) for all n; and (ii) f(z,) — L and h(x,) — L. Now the sequence version
of the squeezing theorem implies that g(z,,) — L, too. Since this applies to any sequence {x,, } of the given type, Lemma 3.2
implies that wh_rg g(z) = L, as desired.



