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CHAPTER 4

SECTION 4.1

1. Since det
(
−2− λ 9

1 −2− λ

)
= λ2+4λ−5 = (λ+5)(λ−1), the eigenvalues are −5 and 1. Therefore

0 is a saddle point. To find an eigenvector for the eigenvalue −5, we notice that

(−5)
(

x
y

)
=
(
−2 9
1 −2

) (
x
y

)
=
(
−2x + 9y
x− 2y

)

Thus −5x = −2x+9y, so that x = −3y. Therefore
(
−3
1

)
is an eigenvector. To find an eigenvector

for the eigenvalue 1, we notice that

(1)
(

x
y

)
=
(
−2 9
1 −2

) (
x
y

)
=
(
−2x + 9y
x− 2y

)

It follows that x = −2x+9, so that x = 3y. Therefore
(

3
1

)
is an eigenvector. The general solution

is

X(t) = p

(
3
1

)
et + q

(
−3
1

)
e−5t

The portrait appears next, to the left.

2. Since det
(

2− λ −1
2 3− λ

)
= λ2 − 5λ + 8, the eigenvalues are (5 ± i

√
7)/2. Thus 0 is an unstable

spiral point. The portrait appears above, to the right.
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3. Since det
(
−2− λ −1

0 −2− λ

)
= (λ+2)2, the single eigenvalue is −2, so that 0 is an asymptotically

stable degenerate node. To find an eigenvector for the eigenvalue −2, we notice that

(−2)
(

x
y

)
=
(
−2 −1
0 −2

)(
x
y

)
=
(
−2x− y
−2y

)

Therefore −2x = −2x− y, so that y = 0. Thus
(

1
0

)
is an eigenvector. Next, as in the solution of

Example 3, we need to find v and w such that(
1
0

)
=
(
−2− (−2) −1

0 −2− (−2)

)(
v
w

)
=
(

0 −1
0 0

)(
v
w

)
=
(
−w
0

)
Consequently w = −1, and we can let v = 0. It follows that the general solution is given by

X(t) = p

(
1
0

)
e−2t + q

(
t
−1

)
e−2t

The portrait appears next.

4. Since det
(

1− λ 5
−1 −1− λ

)
= λ2 +4, the eigenvalues are 2i and −2i. Thus 0 is a stable center. To

find an eigenvector, we notice that

(2i)
(

x
y

)
=
(

1 5
−1 −1

)(
x
y

)
=
(

x + 5y
−x− y

)
Therefore 2ix = x + 5y, so that y = (−1 + 2i)x/5. If x = 5, then y = −1 + 2i. Thus
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(
5

−1 + 2i

)
=
(

5
−1

)
+
(

5
2

)
i

is an eigenvalue for 2i. By (15) we conclude that the general solution is given by

X(t) = p

((
5
−1

)
cos 2t−

(
5
2

)
sin 2t

)
+ q

((
5
−1

)
sin 2t +

(
5
2

)
cos 2t

)
The portrait appears next.

5. Since det
(
−3− λ 2

1 −4− λ

)
= λ2 + 7λ + 10 = (λ + 5)(λ + 2), the eigenvalues are −5 and −2.

Thus 0 is an asymptotically stable node. To find an eigenvector for −5, we notice that

(−5)
(

x
y

)
=
(
−3 2
1 −4

)(
x
y

)
=
(
−3x + 2y
x− 4y

)

Thus −5x = −3x + 2y, so that y = −x. Therefore
(

1
−1

)
is an eigenvector. To find an eigenvector

for the eigenvalue −2, we notice that

(−2)
(

x
y

)
=
(
−3 2
1 −4

)(
x
y

)
=
(
−3x + 2y
x− 4y

)

Thus −2x = −3x + 2y, so that x = 2y. Therefore
(

2
1

)
is an eigenvector. The general solution is

X(t) = p

(
2
1

)
e−2t + q

(
1
−1

)
e−5t

The portrait is next, to the left.
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6. Since det
(

1− λ 1
−9 3− λ

)
= λ2 − 4λ + 12, the eigenvalues are 2− 2

√
2i and 2 + 2

√
2i. Therefore 0

is an unstable spiral point. The portrait appears above, to the right.

7. Since det
(
−2− λ −1

4 −2− λ

)
= λ2 + 4λ + 8, the eigenvalues are −2− 2i and −2 + 2i. Therefore 0

is an asymptotically stable spiral point. The portrait is below, to the left.

8. Since det
(
−3− λ 0

0 −3− λ

)
= (λ + 3)2, the lone eigenvalue is −3. Thus 0 is an asymptotically

stable degenerate node; more specifically, it is a star solution. The portrait appears above, to the
right.

9. Since det
(
−2− λ −3

3 4− λ

)
= λ2−2λ+1 = (λ−1)2, the lone eigenvalue is 1. Thus 0 is an unstable

degenerate node. To find an eigenvector for the eigenvalue 1, we notice that
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(1)
(

x
y

)
=
(
−2 −3
3 4

)(
x
y

)
=
(
−2x− 3y
3x + 4y

)

Thus x = −2x− 3y, so that x = −y. Therefore
(

1
−1

)
is an eigenvector. Next, as in the solution

of Example 3, we need to find v and w such that(
1
−1

)
=
(
−2− 1 −3

3 4− 1

)(
v
w

)
=
(
−3 −3
3 3

)(
v
w

)
=
(
−3v − 3w
3v + 3w

)
This means that 3v + 3w = −1. If we let v = 0, then w = −1/3. It follows that the general solution
is given by

X(t) = p

(
1
−1

)
et + q

(
t

−1/3− t

)
et

The portrait appears next.

10. Since det
(

1− λ 1
1 2− λ

)
= λ2 − 3λ + 1, the eigenvalues are (3−

√
5)/2 and (3 +

√
5)2. Thus 0 is

an unstable node. To find an eigenvector for (3−
√

5)/2, we notice that

1
2
(3−

√
5)
(

x
y

)
=
(

1 1
1 2

)(
x
y

)
=
(

x + y
x + 2y

)

Thus (3 −
√

5)x/2 = x + y, so that y = (1 −
√

5)x/2. Therefore
(

2
1−

√
5

)
is an eigenvector.

Similarly,
(

2
1 +

√
5

)
is an eigenvector for (3 +

√
5)/2. The general solution is given by

X(t) = p

(
2

1 +
√

5

)
e(3+

√
5)t/2 + q

(
2

1−
√

5

)
e(3−

√
5)t/2

The portrait appears next.
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11. Since det
(
−1− λ 2

1 3− λ

)
= λ2 − 2λ− 5, the eigenvalues are 1−

√
6 and 1 +

√
6. Therefore 0 is

a saddle point. To find an eigenvector for 1−
√

6, we notice that

(1−
√

6)
(

x
y

)
=
(
−1 2
1 3

)(
x
y

)
=
(
−x + 2y
x + 3y

)

Thus (1 −
√

6)x = −x + 2y, so that y = (2 −
√

6)x/2. Therefore an eigenvalue is
(

2
2−

√
6

)
.

Similarly, an eigenvector for 1 +
√

6 is
(

2
2 +

√
6

)
. Consequently the general solution is

X(t) = p

(
2

2 +
√

6

)
e(1+

√
6)t + q

(
2

2−
√

6

)
e(1−

√
6)t

The portrait appears next.
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12. Since det
(
−2− λ −1

1 −4− λ

)
= λ2 + 6λ + 9 = (λ + 3)2, the lone eigenvalue is −3. Thus 0 is an

asymptotically stable node. To find an eigenvector for −3, we notice that

(−3)
(

x
y

)
=
(
−2 −1
1 −4

)(
x
y

)
=
(
−2x− y
1− 4y

)

Thus −3x = −2x− y, so that y = x. Therefore
(

1
1

)
is an eigenvector. Next, as in the solution of

Example 3, we need to find v and w such that(
1
1

)
=
(
−2 + 3 −1

1 −4 + 3

)(
v
w

)
=
(

v − w
v − w

)
This means that 1 = v−w, so that v = 1 + w. As a result, we can let w = 1, so that v = 2. By (14)
the general solution is given by

X(t) = p

(
1
1

)
e−3t + q

(
2 + t
1 + t

)
e−3t

The portrait appears next.

13. Suppose that X2(t) = cX1(t) for all t. Then dX2/dt = c dX1/dt. However, dX1/dt = λ X1, and
dX2/dt = µX2. Thus

µX2 =
dX2

dt
= c

dX1

dt
= cλX1 = λX2

We conclude that µ = λ.
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14. (a) Recall that 0 is a center only if the eigenvalues are pure imaginary. Since

det
(

a− λ 10
1 3− λ

)
= (a− λ)(3− λ)− 10 = λ2 − (a + 3)λ + 3a− 10

the roots of this polynomial are

1
2

(
a + 3±

√
(a + 3)2 − 12a + 40

)
=

1
2

(
a + 3±

√
(a− 3)2 + 40

)
But the number inside the square root is always positive, so that the roots of the polynomial
are never imaginary. Thus there is no value of a such that 0 is a center.
Note: If dx/dt = ax− 10y in the given system, then a similar calculation would yield

1
2

(
a + 3±

√
(a− 3)2 − 40

)
which would be pure imaginary if a = −3, so that 0 would be a center if a = −3.

(b) Since there is no such value of a, uniqueness is not relevant.

(c) Again, there is no possibility of 0 being a spiral, since the roots of the polynomial in (a) are
always real.
Note: If dx/dt = ax − 10y in the given system, then if a 6= −3 and (a − 3)2 < 40, it would
follow that the roots of the polynomial would have imaginary parts. In other words, 0 would
be a spiral if 3− 2

√
10 < a < 3 + 2

√
10 and a 6= 3.

15. (a) The required system is

dQ

dt
= I

dI

dt
= − 1

LC
Q− R

L
I

(b) First we calculate that

det
(

0− λ 1
−1/LC −R/L− λ

)
= λ2 +

R

L
λ +

1
LC

which equals 0 if

λ = − R

2L
± 1

2

√
R2

L2
− 4

LC

Thus the real part of λ vanishes only if R = 0, in which case λ =
1√
LC

i. The period is 2π
√

LC.

(c) From the formula in (b), we see that 0 is an asymptotically stable node if R2 > 4L/C, and is
an asymptotically stable spiral point if R2 < 4L/C.



67

SECTION 4.2

1. Let F (x, y) = ln(1 + y2). Then F (0, 0) = 0. Since Fy(x, y) = 2y/(1 + y2), it follows that Fx(0, 0) =
0 = Fy(0, 0). Next, let G(x, y) = −x2y. Then G(0, 0) = 0 = Gx(0, 0) = Gy(0, 0). Since ad − bc =
3 6= 0, it follows that the given system is almost linear at 0. For the associated linear system,

det
(
−1− λ 0

2 −3− λ

)
= λ2 + 4λ + 3 = (λ + 3)(λ + 1), so that the eigenvalues are −3 and −1.

Therefore 0 is an asymptotically stable node of both the associated linear system and the given
system.

2. Let F (x, y) = 1 − exy. Then F (0, 0) = 0. Since Fx(x, y) = −yexy and Fy(x, y) = −xexy, it follows
that Fx(0, 0) = 0 = Fy(0, 0). Next, let G(x, y) = x sin y. Then G(0, 0) = 0. Since Gx(x, y) = sin y
and Gy(x, y) = x cos y, it follows that Gx(0, 0) = 0 = Gy(0, 0). Since ad− bc = −1 6= 0, we find that

the given system is almost linear at 0. For the associated linear system, det
(
−1− λ 2

1 −1− λ

)
=

λ2 + 2λ− 1, so that the eigenvalues are −1−
√

2 and −1 +
√

2. Thus 0 is an unstable saddle point
of both the associated linear system and the given system.

3. We notice that dx/dt = 0 if y = 0, and dy/dt = 0 if x − x3 = 0, so that x = 0,−1, or 1. Thus the
critical points of the system are (0, 0), (−1, 0), and (1, 0). For the critical point (0, 0), let F (x, y) = 0
and G(x, y) = x3. Therefore F and G and their first partial derivatives are 0 at (0, 0). Since

ad−bc = −1 6= 0, it follows that the system is almost linear at (0, 0). Since det
(
−λ 1
1 −λ

)
= λ2−1,

the eigenvalues of the associated linear system are −1 and 1. Consequently (0, 0) is an unstable saddle
point of both the associated linear system and the given system. For the critical point (−1, 0), let
x = −1 + u and y = v. Then the given system becomes

du

dt
= v

dv

dt
= (u− 1)− (u− 1)3 = −2u + 3u2 − u3

Thus we let F (u, v) = 0 and G(u, v) = 3u2−u3. Then F and G and their first partial derivatives are 0

at (0, 0). Since ad− bc = 2 6= 0, the given system is almost linear at (−1, 0). Since det
(
−λ 1
−2 λ

)
=

λ2 + 2, the eigenvalues are −
√

2i and
√

2i. Therefore we cannot conclude anything about the nature
of the critical point. Finally, for the critical point (1, 0), let x = 1 + u and y = v. Then the given
system becomes

du

dt
= v

dv

dt
= (u + 1)− (u + 1)3 = −2u− 3u2 − u3

We obtain the same results for (1, 0) as for (−1, 0): the system is almost linear at (1, 0), and we
cannot conclude anything about the nature of the critical point.
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4. We notice that dx/dt = 0 if y = 0, and dy/dt = 0 if −x + x3 = 0, so that x = 0,−1, or 1. Thus
the critical points are (0, 0), (−1, 0), and (1, 0). For the critical point (0, 0) we have F (x, y) = 0 and
G(x, y) = −x + x3. Then F and G and their first partial derivatives are 0 at (0, 0). Since ad− bc =

1 6= 0, it follows that the given system is almost linear at (0, 0). Since det
(
−λ 1
−1 −λ

)
= λ2 + 1,

the eigenvalues of the associated matrix are i and −i. Therefore we cannot conclude anything about
the nature of the critical point (0, 0). For the critical point (−1, 0), let x = −1 + u and y = v. Then
the given system becomes

du

dt
= v

dv

dt
= −(u− 1) + (u− 1)3 = 2u− 3u2 + u3

Thus we let F (u, v) = 0 and G(u, v) = −3u2 + u3. Then F and G and their first partial derivatives
are 0 at (0, 0). Since ad − bc = −2 6= 0, the given system is almost linear at (−1, 0). Since

det
(
−λ 1
2 −λ

)
= λ2−2, the eigenvalues are −

√
2 and

√
2. Therefore (−1, 0) is an unstable saddle

point of both the associated linear system and the given system. Finally, for the critical point (1, 0),
let x = 1 + u and y = v. Then the given system becomes

du

dt
= v

dv

dt
= −(u + 1) + (u + 1)3 = 2u + 3u2 + u3

We obtain the same results for (1, 0) as for (−1, 0): the system is almost linear at (1, 0), and (1, 0) is
an unstable saddle point of both the associate linear system and the given system.

5. We notice that dx/dt = 2x − x2 − xy and dy/dt = −y + xy. In order for dx/dt = 0 = dy/dt, we
must have 2x− x2 − xy = 0 and −y + xy = 0. If −y + xy = 0, then y = 0 or x = 1. If y = 0, then
2x− x2 − xy = 0 implies that x = 0 or x = 2. If y 6= 0, then since x = 1 and since 2x− x2 − xy = 0,
we find that y = 1. Thus the critical points are (0, 0), (1, 1), and (2, 0). For the critical point (0, 0),
let F (x, y) = −x2 − xy and G(x, y) = xy. Since F and G and their first partial derivatives are 0
at (0, 0), and since ad − bc = −2 6= 0, we know that the system is almost linear at (0, 0). Since

det
(

2− λ 0
0 −1− λ

)
= (λ+1)(λ− 2), we find that the eigenvalues of the associated linear system

are −1 and 2. Therefore (0, 0) is an unstable saddle point of both the associated linear system and
the given system.

For the critical point (1, 1), let x = 1 + u and y = 1 + v. Then the given system becomes

du

dt
= 2(1 + u)− (1 + u)2 − (1 + u)(1 + v) = −u− v − u2 − uv

dv

dt
= −(1 + v) + (1 + u)(1 + v) = u + uv
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Thus we let F (u, v) = −u2 − uv and G(u, v) = uv. Then F and G and their first partial deriva-
tives are 0 at (0, 0). Since ad − bc = 1 6= 0, the given system is almost linear at (1, 1). Since

det
(
−1− λ −1

1 −λ

)
= λ2 + λ + 1, the eigenvalues of the associated system are (−1 −

√
3i)/2 and

(−1+
√

3i)/2. Therefore (1, 1) is an asymptotically stable spiral point for the associated linear system
and for the given system.

For the critical point (2, 0), let x = 2 + u and y = v. Then the given system becomes

du

dt
= 2(2 + u)− (2 + u)2 − (2 + u)v = −2u− 2v − u2 − uv

dv

dt
= −v + (2 + u)v = v + uv

Thus we let F (u, v) = −u2 − uv and G(u, v) = uv. Then F and G and their first partial deriva-
tives are 0 at (0, 0). Since ad − bc = −2 6= 0, the given system is almost linear at (2, 0). Since

det
(
−2− λ −2

0 1− λ

)
= (λ + 2)(λ− 1), the eigenvalues are −2 and 1. Therefore (2, 0) is an unsta-

ble saddle point for the associated linear system and the given system.

6. We notice that dx/dt = 0 if y−x3 = 0, so that y = x3. Since dy/dt = 0 if 1−xy = 0, if we substitute
x3 for y in the equation 1− xy = 0, we find that 1− x(x3) = 0, so that x = −1 or x = 1. Using the
fact that y = x3, we conclude that the critical points are (−1,−1) and (1, 1). For the critical point
(−1,−1), let x = −1 + u and y = −1 + v. Then the given system becomes

du

dt
= (−1 + v)− (−1 + u)3 = −3u + v + 3u2 − u3

dv

dt
= 1− (−1 + u)(−1 + v) = u + v − uv

Thus we let F (u, v) = 3u2 − u3 and G(u, v) = −uv. Then F and G and their first partial derivatives
are 0 at (0, 0). Since ad − bc = −4 6= 0, the given system is almost linear at (−1,−1). Since

det
(
−3− λ 1

1 1− λ

)
= λ2 + 2λ − 4, the eigenvalues are −1 −

√
5 and −1 +

√
5. As a result,

(−1,−1) is an unstable saddle point for the associated linear system and for the given system.

For the critical point (1, 1), let x = 1 + u and y = 1 + v. Then the given system becomes

du

dt
= (1 + v)− (1 + u)3 = −3u + v − 3u2 − u3

dv

dt
= 1− (1 + u)(1 + v) = −u− v − uv

Thus we let F (u, v) = −3u2 − u3 and G(u, v) = −uv. Then F and G and their first deriva-
tives are 0 at (0, 0). Since ad − bc = 4 6= 0, the given system is almost linear at (1, 1). Since

det
(
−3− λ 1
−1 −1− λ

)
= λ2 + 4λ + 4, the associated linear system has a unique eigenvalue, −2.
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As a result, (1, 1) is an asymptotically stable degenerate node of the associated linear system. Al-
though (1, 1) is therefore asymptotically stable for the given system, we cannot conclude from this
information whether it is a node or not.

7. (a) Let F (x, y) = −x(x2 + y2) and G(x, y) = −y(x2 + y2). Since F and G and all their first partial
derivatives are 0 at (0, 0), and since ad− bc = 1 6= 0, we know that the system is almost linear
at 0 = (0, 0).

(b) Note that the associated linear system is

dx

dt
= y

dy

dt
= −x

Since det
(
−λ 1
−1 −λ

)
= λ2 + 1, the eigenvalues of the associated linear system are −i and i.

Thus 0 is a stable center for the associated linear system.

(c) Let x = r cos θ and y = r sin θ, and use (5) and (6) to convert the system to polar coordinates.
We obtain

dr

dt
= −r3

dθ

dt
= −1

We can solve these equations (separately), obtaining

r2 =
1

2(t + a)
and θ = −t + b

for arbitrary constants a and b. Therefore the trajectory of any point spirals clockwise toward
the origin as t increases without bound. Consequently 0 is asymptotically stable.

8. (a) The nonlinear terms of the given system are negatives of the corresponding terms in the system
of Exercise 7, so in a similar way the present system is almost linear at 0 = (0, 0).

(b) The given system has the same associated linear system as that in Exercise 7, so by the same
calculations, 0 is a stable center of the associated linear system.

(c) When we convert to polar coordinates by means of the equations x = r cos θ and y = r sin θ, we
obtain

dr

dt
= r3

dθ

dt
= −1

We can solve these equations (separately), obtaining
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r2 =
−1

2(t + a)
and θ = −t + b

Since r2 ≥ 0, it follows that t + a < 0, so that t < −a. Thus r2 increases without bound
as t approaches −a from the left. Consequently the trajectories all spiral clockwise to ∞ as t
increases and approaches −a.

(d) Since all trajectories spiral toward ∞ by the result of (c), there cannot be any attractor.

9. (a) If we let dx/dt = y, then the given equation can be transformed into

dx

dt
= y

dy

dt
= −x + εy − εx2y

Letting F (x, y) = 0 and G(x, y) = −εx2y, we see that this system is almost linear at (0, 0).

(b) Since det
(
−λ 1
−1 ε− λ

)
= λ2 − ελ + 1, the eigenvalues of the system appearing in (a) are

(ε −
√

ε2 − 4 )/2 and (ε +
√

ε2 − 4 )/2. If 0 < ε < 2, then the eigenvalues are complex, with
positive real part. In that case, 0 is an unstable spiral point of both the auxiliary system and
the nonlinear system. If ε = 2, then there is a single positive real eigenvalue, ε. In that case, 0
is an unstable degenerate node of the auxiliary system, and hence is an unstable critical point
of the nonlinear system. Finally, if ε > 2, then there are two positive eigenvalues, so that 0 is
an unstable node of both the auxiliary system and the nonlinear system. We conclude that in
any case, 0 is unstable, and is a spiral point if 0 < ε < 2.

10. Letting dx/dt = y, we derive the corresponding system

dx

dt
= y

dy

dt
=

1
2

x− ay − 1
2

x3

Now dx/dt = 0 if y = 0. Therefore dy/dt = 0 if x/2 − x3/2 = 0, which means that x = 0, x = −1,
or x = 1. Thus the critical points are (0, 0), (−1, 0), and (1, 0). For the critical point (0, 0), let
F (x, y) = 0 and G(x, y) = −x3/2. Since F and G and their first partial derivatives are 0 at
(0, 0), and since ad − bc = −1/2 6= 0, we know that the system is almost linear at (0, 0). Since

det
(
−λ 1
1/2 −a− λ

)
= λ2 + aλ − 1/2, we find that the eigenvalues of the associated linear system

are
(
−a−

√
a2 + 2

)
/2 and

(
−a +

√
a2 + 2

)
/2. Since

√
a2 + 2 > a and since a > 0 by hypothesis,

we conclude that (0, 0) is an unstable saddle point of both the associated linear system and the given
system.
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For the critical point (−1, 0), let x = −1 + u and y = v. Then the given system becomes

du

dt
= v

dv

dt
=

1
2
(−1 + u)− av − 1

2
(−1 + u)3 = −u− av +

3
2
u2 − 1

2
u3

Thus we let F (u, v) = 0 and G(u, v) = (3u2 − u3)/2. Then F and G and their first partial deriva-
tives are 0 at (0, 0). Since ad − bc = 1 6= 0, the given system is almost linear at (−1, 0). Since

det
(
−λ 1
−1 −a− λ

)
= λ2 +aλ+1, the eigenvalues of the associated system are

(
−a−

√
a2 − 4

)
/2

and
(
−a +

√
a2 − 4

)
/2. If 0 < a < 2, then (−1, 0) is an asymptotically stable spiral point for both

the associated linear system and the given system. If a = 2, then (−1, 0) is asymptotically stable but
we cannot conclude anything else about it. Finally, if a > 2, then (−1, 0) is an asymptotically stable
node of both the associated linear system and the given system.

For the critical point (1, 0), let x = 1 + u and y = v. Then the given system becomes

du

dt
= v

dv

dt
=

1
2
(1 + u)− av − 1

2
(1 + u)3 = −u− av − 3

2
u2 − 1

2
u3

The system is almost linear, and has precisely the same associated linear system as does the one
analyzed for the critical point (−1, 0). Therefore (1, 0) has exactly the same features.

11. Letting dx/dt = y, we derive the corresponding system

dx

dt
= y

dy

dt
= −ay + b sinx

Now dx/dt = 0 if y = 0. Therefore dy/dt = 0 if b sinx = 0. Consequently the critical points of the
system have the form (nπ, 0), where n is any integer. Let x = nπ + u and y = v.

If n is even, the the system is transformed into

du

dt
= v

dv

dt
= −av + b sin (nπ + u) = bu− av + (b sin u− bu)

If we let F (u, v) = 0 and G(u, v) = b sin u− bu, then F and G and their first partial derivatives are 0

at (0, 0), so that the uv-system is almost linear at (0, 0). Since det
(
−λ 1
b −a− λ

)
= λ2+aλ−b, the
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eigenvalues of the associated linear system are
(
−a−

√
a2 + 4b

)
/2 and

(
−a +

√
a2 + 4b

)
/2. Since

a > 0 and b > 0 by hypothesis, it follows that (0, 0) is a saddle point of both the associated linear
system and the uv-system, and hence of the given system at (nπ, 0).

If n is odd, then the system is transformed into

du

dt
= v

dv

dt
= −av + b sin (nπ + u) = −bu− av + (−b sin u + bu)

If we let F (u, v) = 0 and G(u, v) = −b sin u+ bu, then F and G and their first partial derivatives are

0 at (0, 0), so that the uv-system is almost linear at (0, 0). Since det
(
−λ 1
−b −a− λ

)
= λ2 +aλ+ b,

the eigenvalues of the associated linear system are
(
−a−

√
a2 − 4b

)
/2 and

(
−a +

√
a2 − 4b

)
/2.

Since a > 0 and b > 0 by hypothesis, it follows that (0, 0) is asymptotically stable for the uv-system,
and is a node if a2 > 4b and is a spiral if a2 < 4b. The same features hold for the given system at
(nπ, 0). Finally, if a2 = 4b, then (0, 0 is a degenerate node, so we cannot conclude anything about
the nature of the critical point of the given system at (nπ, 0).

12. Letting dx/dt = y, we derive the corresponding system

dx

dt
= y

dy

dt
= −ay + x3

Now dx/dt = 0 if y = 0. Therefore dy/dt = 0 if x3 = 0, so that (0, 0) is the only critical point of the
system. If we let F (x, y) = 0 and G(x, y) = x3, then F and G and their first partial derivatives are
0 at (0, 0). However, ad− bc = 0. Thus the system is not almost linear at (0, 0).
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SECTION 4.3

1. Consider an elliptical orbit, as shown in Figure 4.12(a). Moreover, consider a point on the orbit
where x = 0 and dx/dt = y > 0. At this point the pendulum is hanging straight down, and has
positive angular velocity. Thus the pendulum must move to the right, which means that it must
move to a position where x and y are both positive. Consequently the orbit is traversed clockwise.

2. The system in (4) is
dx

dt
= y

dy

dt
= − g

L
sin x− c

mL
y

Now if dx/dt = 0, then y = 0. Therefore if dy/dt = 0, then

0 = − g

L
sinx

so that x = nπ for some integer n. Thus (0, 0) is a critical point of (4). Next, we notice that the
system can be rewritten as

dx

dt
= y

dy

dt
= − g

L
x− c

mL
y + (

g

L
x− g

L
sinx)

If we let F (x, y) = 0 and G(x, y) = gx/L− g(sinx)/L, then since

dG

dt
=

g

L
− g

L
cos x and

dG

dy
= 0

it follows that F and G and their first partial derivatives are 0 at (0, 0). The system in (4) is thus
almost linear at (0, 0).

3. The text shows that the eigenvalues are (−c−
√

c2 − 4gmL)/2mL and (−c +
√

c2 − 4gmL)/2mL.
The first has a negative real part because c > 0. Since m and L are positive, it follows that the real
part of

√
c2 − 4gmL is less than c, so that the second eigenvalue has negative real part also.

4. The solution coincides with the final part of the solution of Exercise 4.2.11, where a = −c/mL and
b = −g/L.

5. (a) Multiplying both sides of (11) by 2dθ/dt and dividing through by mL2 yields

0 = 2
d2θ

dt2
dθ

dt
+ 2

g

L
(sin θ)

dθ

dt
=

d(dθ/dt)2

dt
− 2g

L

d

dt
(cos θ)

Now we integrate to obtain

c =
(

dθ

dt

)2

− 2g

L
cos θ
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Thus (
dθ

dt

)2

= c +
2g

L
cos θ

(b) If t = 0, then by hypothesis, θ = 0 and dθ/dt = ω. Then from the final equation in (a),

ω2 = c +
2g

L
cos 0 = c +

2g

L

Thus c = ω2 − 2g/L. Substituting for c in the final equation of (a) and using the half-angle
formula sin2(θ/2) = (1− cos θ)/2, we deduce that(

dθ

dt

)2

= ω2 − 2g

L
+

2g

L
cos θ = ω2 − 2g

L
(1− cos θ) = ω2 − 4g

L
sin2 θ

2

Therefore

dθ

dt
=

√
ω2 − 4g

L
sin2 θ

2
= ω

√
1− 4g

ωL
sin2 θ

2

6. If ω > 2
√

g/L, then ω2 > 4g/L. In this case the expression inside the square root in the final
equation of the solution to Exercise 5 is positive, so that dθ/dt > 0 for all t. Thus the pendulum
rotates counterclockwise, with a minimum angular velocity of

√
ω2 − 4g/L that occurs when θ = π,

that is, when the pendulum is in the upward vertical position.

7. if ω < 2
√

g/L, then from the final equation of the solution to Exercise 5 there is an angle θ0 between

0 and π such that ω2 − 4g

L
sin2 θ0

2
= 0, and thus

θ0 = 2arcsin

(
ω

2

√
L

g

)

When θ = θ0, we have dθ/dt = 0, so the pendulum stops and begins to move in the reverse direction.

8. If ω = 2
√

g/L, then the final equation of the solution to Exercise 5 becomes

dθ

dt
= 2

√
g/L

√
1− sin2 θ

2
= 2

√
g/L cos

θ

2
, where − π/2 < θ < π/2

If we separate variables, then we obtain

1
2

sec
θ

2
dθ =

√
g/L dt

Integration of both sides yields

ln
∣∣∣∣sec θ

2
+ tan

θ

2

∣∣∣∣ =√g/L t + c

If θ(0) = 0, then c = 0. Now if t increases without bound, then by the preceding equation, θ/2
approaches ±π/2, so that θ approaches ±π. Thus the pendulum approaches the upward vertical
position.
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SECTION 4.4

1. Let g(x) = (1 + x)3/x = x2 + 3x + 3 + 1/x for x > 0. Then f(a) = π4g(a2). Now

g′(x) = 2x + 3− 1
x2

=
2x3 + 3x2 − 1

x2
=

2(x− 1/2)(x + 1)2

x2

Since limx→0+ g(x) = ∞ = limx→∞ g(x), and since g′(x) = 0 for x > 0 only when x = 1/2, it follows
that g(1/2) is the minimum value of g. Therefore the minimum value of f for a > 0 occurs for
a = 1/

√
2. The minimum value of f is given by

f

(
1√
2

)
= π4 2

(
3
2

)3

=
27π4

4

2. By hypothesis, if t = 0, then x = 0 = y. Thus dx/dt = 0 when t = 0, so that by the uniqueness
theorem for differential equations, x = 0 for all t. Similarly, dy/dt = 0 when t = 0, so again by the
uniqueness theorem, y = 0 for all t. Thus the entire orbit lies on the z axis. Finally, we notice that
dz/dt = −bz, so that z = c e−bt, where c is an arbitrary constant. Thus limt→∞ z = limt→∞(c e−bt) =
0. Consequently limt→∞X(t) = 0.

3. Notice that when x = 0 we have dx/dt = σ y. Now if y > 0, then dx/dt > 0, so that x is increasing.
By contrast, if y < 0, then dx/dt < 0, so that x is decreasing. For an orbit that revolves around the
z axis, our observations imply that the orbit must revolve in a clockwise direction when viewed from
above.

4. Notice that the inequality −λ2 > λ1 is equivalent to 0 > λ1 +λ2, which by (3) and (4) is tantamount
to the inequality 0 > −(σ + 1), which is valid because σ > 0 by hypothesis. Next, the inequality
λ1 > −λ3 is equivalent to

−(σ + 1) +
√

(σ − 1)2 + 4rσ

2
> b, that is,

√
(σ − 1)2 + 4rσ > 2b + σ + 1

Squaring both sides of the preceding inequality, and then simplifying, we find that

rσ − σ > b2 + b + bσ

which is equivalent to the inequality r > 1 + b(σ + 1 + b)/σ.

5. If we let x = −
√

b(r − 1) + u, y = −
√

b(r − 1) + v, and z = (r − 1) + w, then the Lorenz system
is transformed into

du

dt
= σ(−

√
b(r − 1) + v)− σ(−

√
b(r − 1) + u) = −σu + σv

dv

dt
= r(−

√
b(r − 1)+u)−(−

√
b(r − 1)+v)−(−

√
b(r − 1)+u)(r−1+w) = u−v+

√
b(r − 1) w−uw

dw

dt
= (−

√
b(r − 1) + u)(−

√
b(r − 1) + v)− b(r − 1 + w) = −

√
b(r − 1) u−

√
b(r − 1) v − bw + uv
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By letting F (u, v, w) = 0, G(u, v, w) = −uw, and H(u, v, w) = uv, we see that the above system
is almost linear at (0, 0, 0). The associated matrix Aq is given by

Aq =


σ σ 0

1 −1
√

b(r − 1)

−
√

b(r − 1) −
√

b(r − 1) −b


The characteristic equation of Aq turns out to be exactly the same as that for Ap given in (7). Thus
both matrices have the same eigenvalues.

6. If we let x =
√

b(r − 1) + u, y =
√

b(r − 1) + v, and z = (r − 1) + w, then as in the solution of
Exercise 5, the Lorenz system is transformed into

du

dt
= −σu + σv

dv

dt
= u− v −

√
b(r − 1) w − uw

dw

dt
=
√

b(r − 1) u +
√

b(r − 1) v − bu + uv

By letting F (u, v, w) = 0, G(u, v, w) = −uw, and H(u, v, w) = uv, we see that the above system is
almost linear at (0, 0, 0, and hence the Lorenz system is almost linear at p. The above system yields
the associated matrix appearing in (6).

7. The characteristic equation of Ap is

0 = det


σ − λ σ 0

1 −1− λ −
√

b(r − 1)√
b(r − 1)

√
b(r − 1) −b− λ


which yields

0 = −(σ+λ)(1+λ)(b+λ)−σb(r−1)+σ(b+λ)−(σ+λ)b(r−1) = −λ3−(σ+b+1)λ2−b(σ+r)λ−2bσ(r−1)

which is equivalent to the formula in (7). By definition, the eigenvalues of Ap are the roots of the
above equation.

8. Suppose that the roots of (7) are c, α + iβ, and α− iβ, where α and β are real numbers. Then

λ3 + (σ + b + 1)λ2 + b(σ + r)λ + 2bσ(r − 1) = (λ− c)(λ− α− iβ)(λ− α + iβ)

If we let λ = 0 in the equation, we obtain
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2bσ(r − 1) = −c(α + iβ)(α− iβ) = −c(a2 + b2)

Since b > 0, σ > 0, and r > 1, it follows that 2bσ(r − 1) > 0. Therefore c < 0.

9. (a) If the characteristic equation of Ap has two (or three) real roots, then the polynomial on the
left-hand side of (7) must have two distinct critical points. Setting the derivative to 0 yields

3λ2 + 2(σ + b + 1)λ + b(σ + r) = 0

There are two real solutions for this equation only if the discriminant is positive, that is, if

4(σ + b + 1)2 − 12b(σ + r) > 0

This inequality is equivalent to

r <
σ2 − bσ + b2 + 2σ + 2b + 1

3b

(b) If σ = 10 and b = 8/3, then the final inequality in part (a) yields

r <
100− 80/3 + 64/9 + 20 + 16/3 + 1

8
=

961
72

Let r0 = 961/72. Part (a) tells us that if r > r0, then the characteristic polynomial cannot
have two real roots. But that means that two of its roots must be complex numbers. Thus two
eigenvalues of Ap are complex numbers.

10. The left-hand side of the equation factors as follows:

λ3 + aλ2 + cλ + ac = λ(λ2 + c) + a(λ2 + c) = (λ + a)(λ2 + c)

Thus the roots of the given equation are −a,
√

c i, and −
√

c i, which shows that two roots are pure
imaginary.

11. In order to render (7) in the form of the equation in Exercise 10, we need to have

(σ + b + 1)b(σ + r) = 2bσ(r − 1)

Solving for r yields r0 with the property that

r0 =
σ(σ + b + 3)

σ − b− 1

It follows from Exercise 10 that Ap has two pure imaginary eigenvalues if r = r0.

12. The period-doubling occurs as r decreases from approximately 1.66 to 1.45.


