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CHAPTER 2

SECTION 2.1

1.

Onour TI-81, y =.3333333333 . If n =37, then the TI-81 yields IB"(x) - BP)(y) = 12/3 — 0853681761 > 1/2.
Moreover, 37 is the smallest value of n such that IB”)(x) — B(y)l > 1/2.

Let x be an arbitrary number in [0, 1]. Arbitrarily close to x are a dyadic rational y # 0 and an irrational
number z. Since y is dyadic, it follows from Exercise 1.3.14 that the iterates of y are eventually 1. Thus there
is a positive integer m such thatif n 2m, then B)(y)=1. Since z is irrational, and hence not dyadic, Exercise

1.3.18 tells us that for some n, > m, B['l °](x) < 1/2. Consequently IB[” °](y) - B[" °](z)l > 1/2. It follows that either

IB[" 0](x)— B[" °](y)l > 1/4 or lB[""](x)— B[" °](z)| > 1/4. As aresult, B has sensitive dependence at the arbitrary
number x, so B has sensitive dependence.

a. If x is not a dyadic rational, then the iterates of x are not dyadic rationals either, so that (B¥)'(x) exists and
(BMy(x) = 2". It follows that

e
lim — ln | BPYx)| = m 2" = In2

Therefore A(x) =In2 whenever x is not a dyadic rational.

b. Let fix)=B2(x), sothat =B If x isnot a dyadic rational, then (f")’(x)=2%" forall n. Therefore

lim l1:122" =2In2

n— g
In order that Bu(x) bein [0, 1] for all x in [0, 1], it is necessary that 0 < u < 1.

a. Supposé that 0<S p<1/2. If 0< x <1/2, then By(x)=2px < 1/2; similarly, if 1/2<x <1, then B(x) =
u2x-1) < (1/2)2x— 1)=x -1/2< 1/2. Thus if x is any number in [0, 1], then Bﬂ(x) lies in [0, 1/2),
so that for any positive integer n > 2,

I8 = 1B~ @m| = eur B0

Since 0 <2u < 1, it follows that the iterates of x converge to 0. Therefore B, does not have sensitive
dependence. Next, if g =1/2, then forany x and y in [0, 1/2] we have B, (x)— B,(y)l=Ix —yl, so B,
does not have sensitive dependence. Finally, assume that 1/2<pu < 1. If x and y are both in [0, 1/2] or
both in [1/2, 1], then lBﬂ(x) - Bu(y)l = 2ulx —yl, so that while they remain in the same half of the interval
[0, 1], the iterates of x and y separate from one another by a factor of 2y, which is greater than 1. It
follows that if x and y are distinct, then for some n, BI(x) will lie in the interval (3/8, 1/2) and B'(y)

will lie in (1/2, 5/8) (or vice versa). Without loss of generality, suppose that 3/8 < B'(x) < 112 < B["](y) <
5/8. Then 3/4 < Bl'*'(x)<1 and 0< B["+11(y)< 1/4, so that B (x) -B {y)l > 3/4-1/4=1/2. Thus B,
has sensitive dependence if 1/2<pu<1.

b. At points where A(x) exists we find that

- e
1 1
A@) = lim = Y mBxy = lim ~ Z In (20) = In (2)
n n k=0 n—-)eo n k=0
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5. Let £>0. Since f is continuous, there isa &> 0 such thatif Ix— pl < 8, then [¥(x)— Mp)<e for k=1,
2, .., n. Since by hypothesis, I(f™Y(@) <1, we know that p is an attracting fixed point of f". As a result,
thereisa & * such that 0 < §* < & and such thatif x —pl< 8*, then I"(x)—f"(p) < lx — pl. Consequently
for such an x, If*¥(x) - f¥(p)l < . This means that f cannot have sensitive dependence on initial conditions at p.

6. a. Let xo=x, andlet x,= "](xo), for n=1,2,... If xy =p, then

1 g |
A = lim —In [ G| = m —In If el () -+ S Goy 0 )+ S 05, )

° 1 ’ ’, Sas 7, . 13 n_N ’
= lim = In "0 "(x) S Gyl + lim In If ()l
=0+Inlf'@) = lnlf' ()
b. Let x,=x, andlet x,=f"(x), for n=1,2,.... If xy=p, then Xy, =q Xy,,=7, Xy,3=p, etc. It

follows that

1 1
20 = lim —in [ @] = lm —In G ) S G G 05 )

= i L e @) < ol + lm S oY @ o)

n—co

1
= 3 ey @y o)

7. a. From Theorem 1.16 we know that the 2-cycle {g,,7,} attracts every x in (0, 1) except the fixed point p, =
1 — 1/u and its preimages. Suppose first that x is attracted to the 2-cycle. Let £> 0. Since the iterates of x
converge to the 2-cycle, there exists an N such that

|1n 10,401 — 110,00k, I | < & forall k2N
Since it is only the “tail end” of the iterates of x that affects A(x), we know that A(x)= A(xy). If n > N,
then by the preceding inequality, we find that

2n-1

Mxy) = lim — 2 InIQ;(xl = lim — Z 0 10,06,) Q)% )l = m 10,() 0,

1
3 Inlp?-2u-41<0

b. If x is eventually the fixed point p,=1- 1/, then by Exercise 6(a), Mx) = 1Q,(p) = In I - 2I.
8. a. QM(1/2)=0 for n22.

b. We find that Q0.51)~ 091785 > 1/2, QU%0.501) = 0.72891 > 1/2, and Qf”(0.5001) ~ 0.70807 > 1/2.
If y = 0.51, 0.501, or 0.5001, then by part (a), 1Q¥"(1/2) - Q¥"(y)I= Q) > 1/2 for an appropriate 7. '
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SECTION 2.2

1.

Let B, = [n, ) for each positive integer n. Then each B, is closed, and the sequence is nested. However, the

intersection of the B, is void.

Let B,=(0, 1/n) for each positive integer n. Then each B, is bounded, and the sequence is nested. However, the
intersection of the B, is void.

Let (a b) be an arbitrary open interval in [0, 1]. Then there exists a positive integer n such that 1/2" < b -q.
Now (g b) contains at least one (dyadic) rational k/2", because for each k, (k + 1)/2" — k/2" =1/2<b - a.
Thus the dyadic rationals, and hence the rationals, are dense in [0, 1].

a. Since h(x)= 1---, it follows that hTx) = T",_ so that x = T(x). Thus x is a fixed point. But the only
fixed points of T are 0 and 2/3. Since h(0) =0--- and h(2/3) =1---, the desired number is 2/3.

b. Since h(x)=10--, it follows that x is a period-2 point. The two period-2 points of T are 2/5 and 4/5.
Since h(2/5)=01--- and h(4/5)=10---, we know that the desired number is 4/5.

a. Suppose that h(x) = 110---. Then h(T(x))= 10---. Since h(1)=10--- and h is one-to-one, we conclude
that T(x) = 1. This means that x = 1/2. However, h(1/2) = 010---. This contradiction proves that there is
no x such that a(x)= 110---

b. If there were an x such that h(x)= xyx,x,"x,, then it would follow that h(T"*!(x))=110---. By part (a),
this is impossible.

By Theorem 2.9 we know that there is an element s in D. If U is an arbitrary nonempty interval in [0, 1], then
there is some iterate, say y, of s thatisin U. Since s is irrational, so is y. Moreover, y is in D because
the collection of iterates of y differs from that of s by merely a finite set of points. Thus D is dense in [0, 1].

a. Let s=01 0010001 00001 000001---, so that each block of zeros has one more zero than the previous
block. Since s is not a finite sequence, Theorem 2.8 assures us that there is an x in [0, 1] such that A(x) =

s. Since s never repeats, x is irrational. Notice that no iterate of x begins 11---. This means that no
iterate x liesin (1/2, 3/4). In other words, x is an irrational number without a dense orbit.

b. Let D, consist of all x in [0, 1] such that for some n, A(T"(x))=s, where s is the sequence defined in
part (a). Then D, is densein [0, 1], and D, c D*. Consequently D* is dense in [0, 1].

a. Assume that h(x) = xyx;x, ==+, and that

8(xy) 8(xg, x)) 8(xp X5 X;)
+ + +

=

2 2 2
We will show that A(z) = x,x,x, --- = h(x). Since h is one-to-one, it will follow that x = z.
Let 0<z<1/2, and suppose that x, = 1. By the definition of g, this would imply that g(x0 Xy oor Xp)
=0 forall k > 1. This would mean that xx,x, -+ = 110 -, which is impossible by Exercise 5. Therefore

x, =0, so that the first term of h(z) is x,. Now suppose that 1/2 <z < 1. By the definitions of g and z,
Xp (mod 2) = g(xy) =1, so that x,= 1. Therefore the first term of h(z) is x,= 1. We conclude that for any z

in [0, 1], the first term of A(z) is the same as the first term of A(x).
Next we will show that

T(x) =

8x) 8(x,, xy) 8(x;, Xy, X3)
+ + +
2 22 23
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On the one hand, suppose that 0 <z<1/2. Then x,=0 and T(z) = 2z. Therefore

80,x) g0, x,x) g(x)  glx, xy)
+ + = + +
2 22 2 92

T@) = g(0) +

On the other hand, suppose that 1/2<z<1. Then x,=1 and T(z) =2 - 2z, so that

4

8(Lx)  aLx,x)

TQ =2 - 8h) - = :

Since g(1, x;, Xy ..., %) = 1 — g(x;, ..., X;), we can write 7(z) as follows:

1-g(x) = 1-g(x;, xy) 3 1-g(x;, Xy X3) e

2-1-
2 22 23

=(2_1_

8(x) 8(x;5 Xy) 8(xy, X5 X3)
+ +
2 22 : 23

T(2)

N | =
e

1 ex)  g(xpx) 8(xys Xps X3)
—— gy RN + + + + e
23 2 22 23

Repeating our earlier argument involving x,, we find that if 0 < T(z) < 1/2, then x, =0, whereas if 1/2<
T(z) <1, then x, = 1. Thus the second term of h(z) is the same as the second term of h(x). Continuing

with Tz, T8%z), ..., we find that one by one the terms of A(z) are the same as those of h(x). In other
words, h(z) =h(x). Since h is one-to-one, we conclude that z=x, which completes the solution of part (a).

b. By part (a), it suffices to compute the partial sum

8(0) & 80, ) i 800, 1,0) " 80, 1,0,0) i 20, 1,0,0,0 i 80,1,0,0,0,1) + 2(0,1,0,0,0,1, 1)
2 4 8 16 32 64 - 128

of z corresponding to x, because the remaining terms add up to no more than 1/100 because 0<g<L
Now the partial sum of the series is 1/4 + 1/8 + 1/16 +.1/32 + 1/128 = 61/128. Therefore

61 2 -
= < x, < P or equivalently, 0.476563 < x, < 0.484375

9. Weobtain 0%(0.28) =~ 0.62985.

10. Our computer shows that 1Q{"1}(.45) - 11 < .001.

11. By Exercise 2.1.2, B has sensitive dependence. By Exercise 1.3.16, every rational k/p in [0, 1) such that p is
a positive odd integer is periodic. Thus the periodic points of B are dense in [0, 1]. The same kind of association
k can be made between x in [0, 1] and a sequence of 0’s and 1’s asis made for 7. The number x such that

k(x)=010001 1011000001 --- has a dense orbit.

12. a. Let
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13.

a.

, 0if 0 < fx) <13
ho(x) = xpx)x, -+-, where {1 if 1/3 < f"(x) < 2/3
2if 23 < fx) < 1

The proof that A, : [0, 1] = A, is one-to-one and onto is similar to the corresponding proof for A.

Our solution will be patterned after the solutions of Exercises 1.3.15 and 1.3.16. Presently we will prove that
if 0<x<1 and x isrational, then x is eventually periodic. Since 0 and 1 are eventually periodic, let us
assume that x = k/p is in reduced form, with 0 <k < p. Then f{x)= 3x —j, for an appropriate nonnegative
integer j. Therefore f(x) = m/r, where r divides p and 0 <m < r. However, there are only finitely many
distinct such possibilities. Consequently eventually the iterates of x must repeat. This means that x is
eventually periodic.

Now assume that x = k/p, where p is prime to 3. To show that x is periodic, let Sp denote the
collection of all k/p in reduced form, where 0 <k < p. Then the iterates of x arein S, because p is prime
to 3. Nowif fix)=fy) and x <y, then 3x=3y —1 or 3x =3y -2, in which case, y = (3k + 1)/(3p) or
y = 3k + 2)/(3p) inreduced form. Either way, y is not in S, Thus x in S, can be the iterate of only one
number in S, ‘Since x in S, is eventually periodic by the preceding paragraph, we conclude that the orbit of
x is S, sothat x is periodic.

By a proof similar to that given in Exercise 2.1.2, it follows that f has sensitive dependence on initial
conditions. For the function h, defined in part (a), let x be the number in [0, 1] such that

hy(x) = 01200010210 11 12 20 21 22 000 001 002 ---
Since the orbit of Ay (x) is dense in A), one can show that the orbit of x is dense in [0, 1].

Let n be an odd integer. By Theorem 1.15, k/n is periodic for all even integers 0 < k < n. The orbit of k/n
is contained in the set S, = {2/n, 4/n, ..., (n— 1)/n}. Thus S, is a disjoint union of cycles. The cycles may
have different lengths, as in the case for n = 9. But if we now assume additionally that n is prime, then we
can show that the period of each element must divide the cardinality of §,, which is (n — 1)/2.

To prove this, we will show that each element of S, is a fixed point of T~ One can describe the
graph of 7~ D2l explicitly, and prove that the fixed points of 71~ have the form 2j 2®~D?2 + 1) (see
the solution of Exercise 1.4.2, for example.) Since n is prime, we know that an element of S, is of this
form if and only if n divides 2 ~Y? + 1, or equivalently, 2"~ = + 1 (mod n). Now consider the set P =
{1,2,3,..,n-1},and let f: P — P be the function defined by fix)=2x (modn). Now f is invertible on
P, since if k is even, then f(k/2) =k, while if k is odd, then f{(n+ k)/2)= k. Therefore each element of
P is periodic. If C isacyclein P, thensois mC, which is the set obtained from C by multiplying all of
its elements by m mod n. Since n is prime, it follows that C and mC have the same cardinality. Hence
all the cycles in P have the same cardinality, and this cardinality divides n — 1. In particular, we have

2 = f"-12) = 2" (mod n)

Therefore 2" ~'=1 (mod n), so that 2®"~VY2 = +1 (mod n). This completes the proof that each element of S,

is a fixed point of 7"~V and hence has a period that is a divisor of (n— 1)/2. If we now also assume that
(n— 1)/2 is prime, then it follows that S, consists of a single orbit.

If there are infinitely many prime pairs {n, (n — 1)/2}, then by part (a) there exist orbits having arbitrarily
many elements, all spread evenly throughout the interval [0, 1]. Thus if U and V are any two nonempty
open intervals in [0, 1], then there exists an orbit having at least one point in each interval. This implies that
T is transitive.
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SECTION 2.3

1.

In Theorem 2.16let a= —pu, r= -y, b=2-pu, s=pu, and t=0. Then ¢c=0, d=1, and e=(-1/p) + 1.
Therefore h(x) = x — (1/u) + 1. Notice that h~'(x)=x+ (1/u)—1, so that k~*(0)=(1/w)—1 and h~!(1)= Up
Since h is linear on L and since its range must be the domain of Q;r which is [0, 1], it follows that L =

(1) - 1, Uy,

In Theorem 2.161let a= -1, b=0, r= —p, s=4 and t=0. Then c=pu¥4 — w2, d= 1y, and e=1/2.
Therefore h(x) = x/u + 1/2. Notice that h~'(x)= pux—w?2, so that h~'(0)= — w2 and h~'(1) =w2. Since
h is linear on L and its range must be the domain of Q,, whichis [0, 1], it follows that L =[— w/2, p/2].

a. InTheorem 2.16,let a= —y, b=y, c=0, r= —C, 5s=0, and t=1. Then 0= (u’- 2u—4C)/(- 4,
so that C = pu?/4 — p/2. Thus
2

4
h(x) = —— .
(x) 2—ux + 2~

sothat 0, and F; are conjugates.

b. Since 0 is a critical point of F., Singer’s Theorem tells us that it suffices to determine iterates of 0.

c. If C=7/4, thensince C=p%4— w2, we find that 7/4 = u¥4 — /2, which is equivalent to p? -2 -7 =
0. The solutions of this equationare u=1= 2\/5 . Since p >0, we conclude that =1+ 2\/5 . Since h
found in part (a) is linear and is increasing, it follows from Theorem 2.13(ii) thatif u > 1 + 2\/-2— , then Q,
has a 3-cycle.

From Theorem 2.16 it follows that if ¢=C, then K, is conjugate to F, via h, where h(x)=x/C.

a. Ad-cycleof T is {2/15, 4/15, 8/15, 14/15}. By Example 2 and Theorem 2.13(ii) it follows that a 4-cycle of
g, is

.-21‘.1 2 ® 4. . F 8. ., 7 14
{sin (2 15),sm (2 15), sin (2 15), sin (2 15)}

which is approximately {0.043227, 0.165435, 0.552264, (0.989074}.

b. From Exercise 1.4.2, we know that {2/11, 4/11, 8/11, 6/11, 10/11} is a 5-cycle of T. By Example 2 and
Theorem 2.13(ii), and by the method used in part (a), we find that a 5-cycle of Q, is approximately

{0.079373, 0.292292, 0.827430, 0.571157, 0.979746}

From Section 1.5 we know that if 3 < u < 3.25, then Qﬂ has a 2-cycle, deﬁoted by {%’ I"l}. By Exercise 1 and
Theorem 2.13(ii) it follows that {k~'(g,), #~'()} is a 2-cycle for f,, where A~'(x)=x+ (1/t) - 1. From the
formulae for g, and 7, on page 48 we find that

301 ‘ e gt o]
hlg) = - = + T V@-3)@+1) and 1) = =5 5ot 5n Vu-du+D

1
2 2u 2u 2u

Suppose there exists a polynomial h, given by h(x)=ax" + a,,_lx"’1 + o+ ax +dy, suchthat hof=g oh.
This would mean that
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10.

11.

12.

13.

14.

ax™ + -+ ax® +ay = (@x" + o+ ap) — pax" + - + ap)’

- Equating the highest-power terms yields a,x¥= —ua’x> forall x. Since a,#0 by hypothesis, this means that

1= —-pa,f » which implies that p <0. However, this contradicts the hypothesis that ¢ > 0. Consequently no such

“polynomial % exists.

If O, and T were linearly conjugate via h, then h would be linear with domain and range both equal to [0, 1].
In that case, h(x)=x or h(x)=1- x, neither of which conjugates O, to T. (We note that any function linearly

conjugate to a linear function must be linear. As a result, any function linearly conjugate to T must be piecewise
linear, which Q, is not.)

Since T, is piecewise linear and Q” is not piecewise linear, the same reasoning given in the solution of Exercise
8 applies to show that Q , and T, cannot be linearly conjugate to one another.

Let Hy=Hoh. Then H, is linear since both H and h are linear. Moreover,
Hyof =Hohof=Hogoh =koHoh = koH,
Thus f and k are conjugate via H,.

Since h is linear, sois h~'. Moreover, since hof=goh, wefindthat f=hohof=h'ogoh, sothat
fohl=hlogohoh™=h"l0og. ‘

a. By the Intermediate Value Theorem (or by Lemma 1 on p. 63), f(U) is an interval. Suppose that y is a
boundary point of f(U), say the largest number in fU). Since f is a homeomorphism, there is an x in U
such that f(x)=y. Since U is an open interval, there is an interval of the form (x — & x + £) contained in
U. If fix— &2) <y and f(x +€&2) <y, then by the Intermediate Value Theorem, f would not be one-to-one
and hence would not be a homeomorphism. Consequently either fix — &2) >y or fix+ &2)>y. Either way
y is not the largest number in f(U), which means that f{U) has no largest number. Similarly, f{U) has no
smallest number. Thus f(U) is an open interval.

b. Suppose that A isdensein J, and let V be an open interval in K. Since f' is a homeomorphism, part (a)
tells us that £~ (V) is an open interval in J. The fact that A is dense in J implies that there is a number a
in A f~YV). Therefore fla) isin A) N V. Since V is arbitrary, we conclude that f(A) is dense in K.

For any f1,let h(x) =x—x,, so h~'(x)=x+x, If g(x)=(hof, 0 h~')(x), then O is a fixed point of g,.
u u fl u f

a. Let I;,(x) =3x. Then (ko f)(x) = h(f(x)) = h(g(3x)/3) = g(3x) = (g o h)(x). Thus f is conjugate to g via A."

b. Since F(x)22/3 for 0<x<1/3, and F(X) < 1/3 for 2/3<x <1, and since F is continuous and
decreasing on [1/3, 2/3], the unique fixed point of F lies in (1/3, 2/3). Since the slope of F at the fixed
point is -3, the fixed point is repelling and after a certain iterate, all higher iterates of any point near the
fixed point are in [0, 1/3] U [2/3, 1]. If x isin [0, 1/3], then F(x) isin [2/3, 1] and F¥(x) isin [0,
1/3]. Moreover, F%(x)= F(2/3 + fix)) = f(x), so that by induction, for x in [0, 1/3] we have FI(x)=
f¥x) for n=1,2,.... Thus any periodic point of F is a periodic point of f of half the period. But since
S is conjugate to g, any periodic point of F corresponds to a periodic point of g of half the period.
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SECTION 2.4

1.

a.

Let S be a finite set, and {x,}~, asequencein S converging to a point x. If x is notin S, thenlet ¢

be the minimum distance between x and every element in S. Thus ¢ >0, and no points of S are within ¢
of x. But this is impossible since x is the limit of the sequence. Thus x isin S, so that S is closed.

Let S be a finite union of closed intervals. If two closed intervals intersect, then their union is a closed
interval. Thus we may assume that S is a finite union of disjoint closed intervals, which are separated from
one another at least by some positive distance c. If {x,};_, is asequencein S that convergesto x, then it
follows that for some k, {x,},_, lies in a single closed interval I of S. Since I is closed, the limit of the
second sequence, which is also x, liesin I, and hence in S. Thus § is closed.

Suppose that r is in (0, 1), and that r has a decimal expansion that is repeating. Then r = O.g7r~ .
where g is some finite block of initial digits and % is a finite block of repeating digits. The simplest case
occurs when # = 0, so that the decimal expansion terminates. Then r=g/10¥, where k is the length of the
block g. Thus r is a rational number. Next, consider the case where g is empty, so that the decimal
expansion begins repeating right away. In this case,

h h

h
R R i SRy 1
10 109 10Y
where the block & has j digits. This is a geometric series with sum r= h/(10/ — 1), which is a rational
number. Finally, suppose that g and % are nonempty. By our observations above, there are positive integers
j and k such that 7 can be written in the form
- - 0.h g h
r=0gh=0g+000-0h-=0g+ — = "> + ——
TR 10 (10 - 1)

We conclude that if r has a decimal expansion that is repeating, then r is a rational number.

Now we assume that r is a rational number in (0, 1), say r=p/g, in reduced form. We will show that r
has a repeating decimal expansion. The actual division of g into p nets a decimal expansion. In this decimal
expansion there can be at most g — 1 distinct nonzero remainders before the remainder either returns to a
previous nonzero integer remainder or becomes 0. Either way a repeating decimal expansion arises.

Every rational number can be expressed as p/g, in reduced form. Let

2P+139 if p>1

Pl_Joitp=0
q

27P*1394 1 if p<-1

The proof thai G is one-to-one from the set of rational numbers onto the set of positive integers is similar to
the proof appearing in Theorem 2.19.

In Exercise 2.2.3 we showed that the rationals are dense in the set of reals. To show that the irrationals are also
dense in the reals, let U be any open interval of length 4. Then there exists an integer n such that \/E In <
d Because U has length d and \/E k+1D)/n - \/5 kin = \/-2_ /n < d it follows that for some integer k,
\/_f k/n isin U. Moreover, \/5 k/n is irrational. Thus the irrationals are dense in the reals.

Now we will show that between any two rationals there are infinitely many irrationals, and vice versa. To
that end, let A be a dense subset of the reals, and let a and b be arbitrary numbers with a< b. From (g, b)
select an infinite number of disjoint open subintervals A;, A,, A4,, ... . One way is to let
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10.

11.

1 -1 1 -
A = (—a+,c b, a+ . b)
k k k+1 k+1°)f,_,

Since A is dense in the reals, -it follows that A, contains a number in A. Consequently there are infinitely

many members of A in (g b). The desired result follows if we either let A denote the irrationals and a and
b any two rationals, or let A denote the rationals and a and b any two irrationals.

)
a. Let E be countable, and assume that D c E. List the elements of E as ¢, e, ¢, .... Now we strike out of
the list those elements not in D. What remains is a list of D, which means that D is countable.

b. The contrapositive of the above statement is the statement that if D is uncountable and D c E, then so is E.

a. Let S denote the set in question. Then S contains .3, .03, .003, ..., which converges to 0. But O is not
in S, so S isnotclosed. To show that S is not open, notice that any non-empty open interval in (0, 1)
contains an interval I of the form I=((k — 1)/10", k/10"), where k and n are positive integers with k < n.
Now I contains numbers whose decimal expansions have the form xx, - x,11x,, - . Such a number

necessarily has a 1 in its decimal expansion, so is notin S. Thus § is not open.
b. By the solution of part (a), S is totally disconnected.

Let B,=[0, 1+ 1/n] for n=1,2, .... The sequence is a nested collection of bounded closed intervals, the lengths
of which converge to 1 as n increases without bound.

2" b ‘

1 2" 2

; .3_" = (5) . Thus lim,_,_ D,(C ;)= 0. This is reasonable.
k=1

We find that D,(C) =

a. Atthe nth stage, 2"~! intervals are removed, each of length 1/5". Thus

n n-1 k n

9k=1 1 2 1 1-@sy 2 1(2
D =1-§——=1_—§-=1____=_+__
) 5 5k=0(sj 5 1-25 3 3|5

k=1
b. From part (a), lim, , D (C ) = 2/3.

Let u >4, and suppose that x is a periodic point of Q”. If x or any given iterate of x lies outside [0, 1],
then successive iterates of x diverge to —»o, which is impossible since x is by hypothesis a periodic point. Thus
x and all of its iterates lie in [0, 1], which means that x isin C,.
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Let pu=5. Then direct computation shows that J;; = [0, o ] and J, = [5 + ST 1], so that

15+2V/5 1 15-2¢5 1 /5

1
=105 -~ ad hy = [ - 5 -]

It is easy to check that J,, is longer than J,,.

By solving Q,(x)=1 for x, we discover that J;, = [0, (1 - / (u—4)/u )/2). Because the graph of Q, is concave
downward, it follows that the minimum value of 0, on J;; occurs at the right-hand endpoint. At that point we
obtain



12.

13.

14.

15.

39

1 1 1 1
Q,Q[5 : 5\/_(;1—4)/u)=u—2 33 Voo |- Vi D

Since /(u—4) =1 if and only if u> -4y —1=0, which occurs if and only if =2+ \/—5_, we deduce that if
nH>2+ \/—5-, then Q,'l(x) >1 forall x in J,. Since the graph of Q, is symmetric about the line x = 1/2, we
conclude that if y>2+ \/_5—, then 1Q,()1>1 forall x in Jp,.

Let x and y be distinct numbers in [0, 1], and assume that y is not in Cy Since Cu is totally disconnected,
we can find sucha y asclose to x as we wish. If x isin Cﬂ, then since the iterates of x remain in [0, 1] and
the iterates of y diverge to =, it follows that for some n, 1Q5'(x)— QW) 2 1. If x isnotin C, then the
iterates of x also diverge to —, so we can find an n so large that Q(x)< 0 and Qi) <0. Since Q> p >
1 on (s, 0), it follows that 10+ !(x) - Q["“](y)l 2 plx — yl. Inductively we find that 10}, *¥(x) — QI *H(y) 2
Wix -yl for k=1,2,.... Since lim, | u = o5, we conclude that the iterates of x and y eventually separate
by more than 1 Consequently Q, has sensmve dependence on [0, 1].

If H#(x) = Hﬂ(y), then x and y lie in the same subinterval J, for all n. Since the lengths of those intervals
approach ‘0, this implies that x =y. To see that Hﬂ is onto, let z,z,z, - be an element of A. Pick intervals
Jiqay Fuoy By ---» such that k(1) =z, and such that J,, yeme1y © S » and such that k(n+ 1) is equivalent
to z,,, modulo 2. Then there exists a unique number x in the intersection of the J,’s. That number x has
the property that Hﬂ(x) =2,2yzy** . Therefore H, is onto.

Suppose that [|X — Y]| < 1/2" but that there exists a k <n such that x, #y, . Then
- -yl
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This contradicts the assumption. Therefore at least the first n elements of the sequences for X and Y coincide.
v |
Denote by d(x,y) the metric in D.

a. Suppose that D — D. If x isin D, then we say that f has sensitive dependence on initial conditions at x
if there exists an €> 0 such that for each 6> (0 thereexistsa y in D and a positive integer n such that
d(x, y) < & and d(f"\(x), f")(y)) > €. If f has sensitive dependence on initial conditions at each x in D,
then we say that f has sensitive dependence on initial conditions on D.

b. Aset A iscalleddensein D ifforany x in D andany €> 0, thereisan a in A such that d(g x) < €
A dense set of periodic points is then defined in the obvious way.

¢. Using the solution of part (b), one defines a dense orbit in the obvious way.



