
� Solutions 

	 	 and condition (P1.1) becomes
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	 1.4	 Coefficients a, b, b± are defined in Eqs. (1.36) and (1.40):
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Chapter 2
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	 	 After rotation through 2p the spinor changes its sign, in	
other words, acquires Berry phase p.

	 2.2	 Starting with Hamiltonian (2.14) we add Zeeman spin	
slitting h into a diagonal part of the Hamiltonian:
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	 	 Eigenvalues and eigenvectors of 2 × 2 matrix (P2.1) are 
expressed as
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	 (P2.2)

	 	 Before we rush to calculate average spin components 
as matrix elements with wave functions (P2.2), we have	
to make sure that these functions are normalized.	
Calculating |e±|2 = 1 we find normalization constants that, 
when substituted into functions e±, give wave functions
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(P2.3)

	 	 Then the average spin components follow:
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Solutions 



� Solutions 

	 	 Spectrum E1,2 acquires an energy gap proportional to the 
perpendicular magnetic field. For small electron momentum 
aRk << h, electron spins are oriented along the z-direction	
(out of the (x, y) plane). When momentum increases, spins 
deflect from the z-direction, x, y-components rise, so in the 
limit of the weak magnetic field, spins tend to lie in the x–y 
plane as shown in Fig. 2.5.

Chapter 3

	 3.1	 Normalization condition:
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	 	 Continuity of electron current at the interface can be written 
as
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	 	 The solution to this equation gives
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	 3.2	 Integrating Eq. (3.25) twice we obtain
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	 	 where A and B are constants to be determined from boundary 
conditions.


