

-12-

CHAPTER 2 OPERATING SYSTEM

OVERVIEW

ANSWERS TO QUESTIONS
2.1 Convenience: An operating system makes a computer more

convenient to use. Efficiency: An operating system allows the
computer system resources to be used in an efficient manner. Ability
to evolve: An operating system should be constructed in such a way as
to permit the effective development, testing, and introduction of new
system functions without interfering with service.

2.2 The kernel is a portion of the operating system that includes the most

heavily used portions of software. Generally, the kernel is maintained
permanently in main memory. The kernel runs in a privileged mode and
responds to calls from processes and interrupts from devices.

2.3 Multiprogramming is a mode of operation that provides for the

interleaved execution of two or more computer programs by a single
processor.

2.4 A process is a program in execution. A process is controlled and

scheduled by the operating system.

2.5 The execution context, or process state, is the internal data by

which the operating system is able to supervise and control the process.
This internal information is separated from the process, because the
operating system has information not permitted to the process. The
context includes all of the information that the operating system needs
to manage the process and that the processor needs to execute the
process properly. The context includes the contents of the various
processor registers, such as the program counter and data registers. It
also includes information of use to the operating system, such as the
priority of the process and whether the process is waiting for the
completion of a particular I/O event.

2.6 Process isolation: The operating system must prevent independent

processes from interfering with each other's memory, both data and
instructions. Automatic allocation and management: Programs

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-13-

should be dynamically allocated across the memory hierarchy as
required. Allocation should be transparent to the programmer. Thus, the
programmer is relieved of concerns relating to memory limitations, and
the operating system can achieve efficiency by assigning memory to
jobs only as needed. Support of modular programming:
Programmers should be able to define program modules, and to create,
destroy, and alter the size of modules dynamically. Protection and
access control: Sharing of memory, at any level of the memory
hierarchy, creates the potential for one program to address the memory
space of another. This is desirable when sharing is needed by particular
applications. At other times, it threatens the integrity of programs and
even of the operating system itself. The operating system must allow
portions of memory to be accessible in various ways by various users.
Long-term storage: Many application programs require means for
storing information for extended periods of time, after the computer has
been powered down.

2.7 A virtual address refers to a memory location in virtual memory. That

location is on disk and at some times in main memory. A real address is
an address in main memory.

2.8 Round robin is a scheduling algorithm in which processes are activated

in a fixed cyclic order; that is, all processes are in a circular queue. A
process that cannot proceed because it is waiting for some event (e.g.
termination of a child process or an input/output operation) returns
control to the scheduler.

2.9 A monolithic kernel is a large kernel containing virtually the complete

operating system, including scheduling, file system, device drivers, and
memory management. All the functional components of the kernel have
access to all of its internal data structures and routines. Typically, a
monolithic kernel is implemented as a single process, with all elements
sharing the same address space. A microkernel is a small privileged
operating system core that provides process scheduling, memory
management, and communication services and relies on other processes
to perform some of the functions traditionally associated with the
operating system kernel.

2.10 Multithreading is a technique in which a process, executing an

application, is divided into threads that can run concurrently.

2.11 Simultaneous concurrent processes or threads; scheduling;

synchronization; memory management; reliability and fault tolerance.

ANSWERS TO PROBLEMS

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-14-

2.1 The answers are the same for (a) and (b). Assume that although

processor operations cannot overlap, I/O operations can.

Number of jobs TAT Throughput Processor utilization
1 NT 1/N 50%
2 NT 2/N 100%
4 (2N – 1)T 4/(2N – 1) 100%

2.2 I/O-bound programs use relatively little processor time and are

therefore favored by the algorithm. However, if a processor-bound
process is denied processor time for a sufficiently long period of time,
the same algorithm will grant the processor to that process since it has
not used the processor at all in the recent past. Therefore, a processor-
bound process will not be permanently denied access.

2.3 With time sharing, the concern is turnaround time. Time-slicing is

preferred because it gives all processes access to the processor over a
short period of time. In a batch system, the concern is with throughput,
and the less context switching, the more processing time is available for
the processes. Therefore, policies that minimize context switching are
favored.

2.4 A system call is used by an application program to invoke a function

provided by the operating system. Typically, the system call results in
transfer to a system program that runs in kernel mode.

2.5 The system operator can review this quantity to determine the degree

of "stress" on the system. By reducing the number of active jobs
allowed on the system, this average can be kept high. A typical
guideline is that this average should be kept above 2 minutes. This may
seem like a lot, but it isn't.

2.6 a. If a conservative policy is used, at most 20/4 = 5 processes can be

active simultaneously. Because one of the drives allocated to each
process can be idle most of the time, at most 5 drives will be idle at a
time. In the best case, none of the drives will be idle.

 b. To improve drive utilization, each process can be initially allocated
with three tape drives. The fourth one will be allocated on demand.
In this policy, at most ⎣20/3⎦ = 6 processes can be active
simultaneously. The minimum number of idle drives is 0 and the
maximum number is 2.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-15-

CHAPTER 3 PROCESS DESCRIPTION AND

CONTROL

ANSWERS TO QUESTIONS
3.1 An instruction trace for a program is the sequence of instructions that

execute for that process.

3.2 New batch job; interactive logon; created by OS to provide a service;

spawned by existing process. See Table 3.1 for details.

3.3 Running: The process that is currently being executed. Ready: A

process that is prepared to execute when given the opportunity.
Blocked: A process that cannot execute until some event occurs, such
as the completion of an I/O operation. New: A process that has just
been created but has not yet been admitted to the pool of executable
processes by the operating system. Exit: A process that has been
released from the pool of executable processes by the operating system,
either because it halted or because it aborted for some reason.

3.4 Process preemption occurs when an executing process is interrupted by

the processor so that another process can be executed.

3.5 Swapping involves moving part or all of a process from main memory to

disk. When none of the processes in main memory is in the Ready state,
the operating system swaps one of the blocked processes out onto disk
into a suspend queue, so that another process may be brought into
main memory to execute.

3.6 There are two independent concepts: whether a process is waiting on an

event (blocked or not), and whether a process has been swapped out of
main memory (suspended or not). To accommodate this 2 × 2
combination, we need two Ready states and two Blocked states.

3.7 1. The process is not immediately available for execution. 2. The

process may or may not be waiting on an event. If it is, this blocked
condition is independent of the suspend condition, and occurrence of the
blocking event does not enable the process to be executed. 3. The
process was placed in a suspended state by an agent; either itself, a

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This work is protected by United States copyright laws

and is provided solely for the use of instructors in teaching

their courses and assessing student learning. Dissemination

or sale of any part of this work (including on the W
orld W

ide W
eb)

will destroy the integrity of the work and is not permitted.

-4-

Note: a number of the files related to the projects are at an instructor

support folder (ISF) at box.com/OS9e-Projects. This document, plus some

other files are at the Instructor Resource Center (IRC) for this book

maintained by Pearson.

PART 1 SEMAPHORE PROJECTS

The files needed for these projects are in the folder Semaphore-Projects at

the ISF.

PART 2 OS/161

OS/161 is an educational operating system developed at Harvard University.

It aims to strike a balance between giving students experience in working on

a real operating system, and potentially overwhelming students with the

complexity that exists in a fully-fledged operating system, such as Linux.

Compared to most deployed operating systems, OS/161 is quite small

(approximately 20,000 lines of code and comments), and therefore it is

much easier to develop an understanding of the entire code base.

 The source code distribution contains a full operating system source

tree, including the kernel, libraries, various utilities (ls, cat, . . .), and some

test programs. OS/161 boots on the simulated machine in the same manner

as a real system might boot on real hardware. System/161 simulates a

“real” machine to run OS/161 on. The machine features a MIPS

R2000/R3000 CPU including an MMU, but no floating-point unit or cache. It

also features simplified hardware devices hooked up to the system bus.

These devices are much simpler than real hardware, and thus make it

feasible for students to get their hands dirty without having to deal with the

typical level of complexity of physical hardware. Using a simulator has

-5-

several advantages: Unlike other software students write, buggy OS

software may result in completely locking up the machine, making it difficult

to debug and requiring a reboot. A simulator enables debuggers to access

the machine below the software architecture level as if debugging was built

into the CPU. In some senses, the simulator is similar to an in-circuit

emulator (ICE) that you might find in industry, only it is implemented in

software. The other major advantage is the speed of reboots. Rebooting real

hardware takes minutes, and hence the development cycle can be

frustratingly slow on real hardware. System/161 boots OS/161 in mere

seconds.

 The OS/161 and System/161 simulators can be hosted on a variety of

platforms, including Unix, Linux, Mac OS X, and Cygwin (the free Unix

environment for Windows).

 The ISF includes the following in the folder OS161 at box.com/OS9e-

Projects:

• Package for instructor's Web server: A set of html and pdf files that

can be easily uploaded to the instructor's site for the OS course, which

provides all the online resources for OS/161 and S/161 access, user's

guides for students, assignments, and other useful material. The folder

OS161/web contains a webpage shell that links to all of the documents

the students need.

• Getting started for instructors: This guide lists all of the files that

make up the Web site for the course and instructions on how to set up

the Web site, at OS161/instructor_notes.shtml.

-6-

• Getting started for students: This guide explains to students step by

step how to download, install, and debug OS/161 and S/161 on their

computer, at OS161/web/docs/start_guide.shtml.

• Background material for students: This consists of two documents

that provide an overview of the architecture of S/161 and the internals

of OS/161. These overviews are intended to be sufficient so that the

student is not overwhelmed with figuring out what these systems are, at

OS161/web/docs/manual/shtml.

• Student exercises: A set of exercises that cover some of the key

aspects of OS internals, include support for system calls, threading,

synchronization, locks and condition variables, scheduling, virtual

memory, files systems and security, at OS161/exercises. A problem

statement and a solution outline are provided for each exercise.

 This OS/161 package was prepared by Andrew Peterson and other

colleagues and students at the University of Toronto.

-7-

PART 3 SIMULATION PROJECTS

The folder Semaphore-Projects at the ISF provides support for assigning

projects based on a set of simulations developed at the University of Texas,

San Antonio. Table 1 lists the simulations by chapter. The simulators are all

written in Java and can be run either locally as a Java application or online

through a browser.

 The folder includes the following:

 1. A brief overview of the simulations available.

 2. How to port them to the local environment.

 3. Specific assignments to give to students, telling them specifically what

they are to do and what results are expected. For each simulation, this

section provides one or two original assignments that the instructor

can assign to students.

 All of the documentation and support material are contained in the

folder Simulation-Projects at box.com/OS9e-Projects, which contains

three folders:

• SimulationAssignments contains seven documents, each containing

the instructions for the student for one of the simulations.

• SimulationAnswers contains expected answers to be provided by the

student.

• SimulationWebPage contains the html files needed to set up a

simulation Web page on your server. Alternatively, you can direct the

students to http://williamstallings.com/OS/Simulations.html

-8-

 These simulation exercises were developed by Adam Critchley

(University of Texas at San Antonio).

Table 1 OS Simulations by Chapter

Chapter 5 - Concurrency: Mutual Exclusion and Synchronization

Producer-consumer Allows the user to experiment with a bounded
buffer synchronization problem in the context
of a single producer and a single consumer

UNIX Fork-pipe Simulates a program consisting of pipe, dup2,
close, fork, read, write, and print instructions

Chapter 6 - Concurrency: Deadlock and Starvation

Starving philosophers Simulates the dining philosophers problem
Chapter 8 - Virtual Memory

Address translation Used for exploring aspects of address translation.
It supports 1 and 2-level page tables and a
translation lookaside buffer

Chapter 9 - Uniprocessor Scheduling

Process scheduling Allows users to experiment with various process
scheduling algorithms on a collection of processes
and to compare such statistics as throughput and
waiting time

Chapter 11 - I/O Management and Disk Scheduling

Disk head scheduling Supports the standard scheduling algorithms such
as FCFS, SSTF, SCAN, LOOK, C-SCAN and C-
LOOK as well as double buffered versions of these

Chapter 12 - File Management

Concurrent I/O Simulates a program consisting of open, close,
read, write, fork, wait, pthread_create,
pthread_detach, and pthread_join instructions

-9-

PART 4 PROGRAMMING PROJECTS

Textbook-Defined Projects

Two major programming projects, one to build a shell, or command line

interpreter, and one to build a process dispatcher are described in the online

portion of the textbook and provided in the ISF. The projects can be

assigned after Chapter 3 and after Chapter 9, respectively.

 The ISF provides a set exercises designed to provide incremental

solutions to the projects, with each successive exercise discussing different

aspects of the project. Both projects are designed around using the C

language on a UNIX platform with descriptions of all the major system

functions that are required being supplied as well as a comprehensive C

Standard Library reference. Progressive solutions to the projects for each

exercise are supplied separately, as are fully functional final project

programs and marking scripts to evaluate student solutions.

 The project and exercise documentation is provided as a complete

Web site with all documents in HTML. The site can be used as is or it can be

customized for use by individual instructors. The suite was built using Adobe

Dreamweaver and uses the Template and Library features of that application

to enable bulk changes to format and repeated content, titles etc.

 All of the documentation and support material are contained in the

folder OS9e-Text-Projects at the ISF.

 These projects were developed by Ian G. Graham of Griffith University,

Australia.

Additional Major Programming Projects

A set of programming assignments, called machine problems (MPs), are

available that are based on the Posix Programming Interface. The first of

-10-

these assignments is a crash course in C, to enable the student to develop

sufficient proficiency in C to be able to do the remaining assignments. The

set consists of nine machine problems with different difficulty degrees. It

may be advisable to assign each project to a team of two students.

 Each MP includes not only a statement of the problem but a number of

C files that are used in each assignment, step-by-step instructions, and a set

of questions for each assignment that the student must answer that indicate

a full understanding of each project. The scope of the assignments includes:

 1. Create a program to run in a shell environment using basic I/O and

string manipulation functions.

 2. Explore and extend a simple Unix shell interpreter

 3. Modify faulty code that utilizes threads.

 4. Implement a multithreaded application using thread synchronization

primitives.

 5. Write a user-mode thread scheduler

 6. Simulate a time-sharing system by using signals and timers

 7. A six-week project aimed at creating a simple yet functional networked

file system. Covers I/O and file system concepts, memory

management, and networking primitives.

 All of the documentation and support material are contained in the

folder OS-Programming-Projects in the ISF, which contains three folders:

• mps: This folder can be uploaded directly to your Web server. It contains

the index.html file that is the Web page seen by the student, plus all of

the files for the machine problems. Each problem consists of a

README.txt file, a compressed zip file and a compressed tar.gz file.

Once the student downloads and decompresses the file for a particular

MP, he or she will have all the files needed for that assignment.

• mps_source: All uncompressed versions of the MPs and their solutions.

-11-

• mps_solutions: This folder can also be uploaded directly to your Web

server. As with the mps folder, it contains the index.html file that is the

Web page seen by the student, plus compressed, downloadable files

containing solutions for each MP. If you choose to provide the

solutions to the students by this means, please make use of a

password protected Web page, so that the solution files are not

publicly available on the Internet.

 These project assignments were developed at the University of Illinois

at Urbana-Champaign, Department of Computer Science. They were adapted

by Matt Sparks (University of Illinois at Urbana-Champagne) for use with

this textbook.

Smaller Programming Projects

Steve Taylor of Worcester Polytechnic Institute has developed a set of 9

programming projects, each of which could be done in about one week. The

project definitions are contained in the file Programming-Projects.doc.

