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Objectives Review Questions

Chapter 1

1.1 We use Eq. 1.1 to convert wavelength to frequency (taking advantage of the constant speed of light

c) and we use Eq. 1.2 to convert frequency to photon energy:

ν =
c

λ
=

2.998 · 108ms−1

1.0 · 10−3m
= 3.0 · 1011 s−1 by Eq. 1.1

Ephoton = hν = (6.626 · 10−34 J s)(3.0 · 1011 s−1) = 2.0 · 10−22 J. Eq. 1.2

1.2 The de Broglie wavelength (Eq. 1.3) is our measure of the degree of quantum character in our

system. We calculate λdB and compare it to the domain to determine if we need quantum mechanics to

describe the physics. In this case, to find the de Broglie wavelength we need to calculate the momentum

p from the kinetic energy, but we can do that:

K =
mv2

2
=

p2

2m

p =
√
2mK =

√

2(1.008 amu)(1.661 · 10−27 kg amu−1)(4.0 · 10−21 J) = 3.66 · 10−24 kgm s−1

λdB =
h

p
=

6.626 · 10−34 J s

3.66 · 10−24 kgm s−1
= 1.8 · 10−10m = 1.8 Å.

Because 1.8 · 10−10m ≪ 1.0µm = 1.0 · 10−6m, it is unlikely that quantum effects arising from this

motion will be significant.

1.3 The atom is in an n = 2 state, and we can use the Bohr model of the atom to calculate the correct

values of the energies. From Eq. 1.15 we can calculate the total energy, and from Eq. 3.7 we can

calculate the potential energy. The question does not specify units, and the most convenient units for

the total energy are Eh:

En = − Z2

2n2
Eh = − 22

2(22)
Eh = −0.5Eh.

The potential energy depends on the radius of the electron orbit in the Bohr model,

rn =
n2

Z
a0 =

22

2
a0 = 2a0,

which gives us

U = − Ze2

4πǫ0r
= − 2e2

(4πǫ0)(2a0)
= − e2

(4πǫ0)a0)
= −1.00Eh.

Chapter 2
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2.1 We apply the operator to the function, and see if we can find the original function again afterward:

α̂f(x) =
1

x

d

dx

(
3x e2x

)
=

1

x

(
3e2x + 3x(2e2x)

)

=
1

x
3e2x + 2 · 3e2x =

(
1

x2
+

2

x

)

f(x).

The result is equal to f(x) times another function of x, so this is not an eigenvalue equation.

α̂g(x) =
1

x

d

dx

(

3 e2x
2
)

=
1

x

(

3(4x)e2x
2
)

= 4 · 3e2x2

= 4f(x).

But g(x) is an eigenfunction of α̂, because the result is the original function g(x) times the eigenvalue

4.

2.2 We use the average value theorem, Eq. 2.10, integrating between 0 and a. The integral over

x4 sin(cx) can be found using a symbolic math program. Setting c = 2π/a for now to simplify the

notation, we have:
∫ a

o

ψ∗ (x4)ψ dx =
2

a

∫ a

0

sin2(cx)x4 dx = 0.176a4.

2.3 To write the Schrödinger equation we need the Hamiltonian, which consists of the kinetic energy

operator −(h̄2/2m)∂2/∂x2, and the potential energy function described in the problem. In this case,

the potential energy is given by the formula for a line, to which we assign a slope U0. We can also add

a constant, but it will have no effect on the relative energies or the wavefunctions, so we may as well set

it equal to zero. Our potential energy function therefore is U0x, and the Schrödinger equation becomes

(

− h̄2

2m

∂2

∂x2
+ U0x

)

ψ = Eψ.

2.4 We use Eq. 2.41 to calculate the energy, with a mass mp and the volume given:

Enx,ny,nz =
h2

8mV 2/3
(n2
x + n2

y + n2
z) Eq. 2.41

E100,1,1 =
(6.626 · 10−34 J s)2

8(1.673 · 10−27 kg)(1.0 · 10−18m3)2/3
(1002 + 12 + 12)

= 3.28 · 10−25 J.

Chapter 3

3.1 We combine the radial and angular parts of the wavefunction as dictated by the quantum numbers,

and also substitute Z = 3 for lithium:

ψ3,1,−1(r, θ, φ) = R3,1(r)Y
−1
1 (θ, φ)

=
4
√
2

27
√
3

(
3

a0

)3/2(
3r

a0

)(

1− r

2a0

)

e−r/a0
√

3

8π
sin θ e−iφ.

3.2 We are using an integral to find an average value, so we use the average value theorem (Eq. 2.10),

where the operator is r (the distance from the nucleus) and the wavefunction is given by ψ3,1,−1(r, θφ)

with Z = 3 for lithium:

32

37

(
3

a0

)3 ∫ ∞

0

(
3r

a0

)2(

1− r

2a0

)2

e−2r/a0 r3 dr = 25a0/3.
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3.3 The number of angular nodes is given by l, which is 1 for a p orbital, and the number of radial

nodes is equal to n− l − 1 = 3− 1− 1 = 1: 1 angular node, 1 radial node.

Chapter 4

4.1 This ion has three electrons and an atomic number Z = 4. We need one kinetic energy term for

each electron, three terms for the attraction of each electron for the nucleus, and then three terms for

electron–electron repulsions, one for each distinct pairing of the electrons: 1 and 2, 2 and 3, and 1 and

3: − h̄2

2me

(
∇(1)2 +∇(2)2 +∇(3)2

)
− 4e2

4πǫ0r1
− 4e2

4πǫ0r2
− 4e2

4πǫ0r3
+

e2

4πǫ0

(
1

r12
+

1

r23
+

1

r13

)

.

4.2 Neutral beryllium has 4 electrons, so Be+ has 3 electrons, which we place in the lowest energy

subshells 1s and 2s for an electron configuration 1s22s1. The zero-order energy is then the sum of the

energies we would calculate if each electron were alone in that subshell. That one-electron energy is

−Z2Eh/(2n
2). We have two n = 1 electrons and one n = 2 electron in the configuration, and Z = 4

for Be, so we arrive at

E0 = −42

2

(
1

12
+

1

12
+

1

22

)

Eh

=
16

2

(
9

4

)

= −18Eh.

4.3 We use Eq. 4.30, which calculates the effective atomic number by treating the electron as though

it were a single electron in an atom with a variable atomic number:

Zeff =

(

−2ǫ(i)n2

Eh

)1/2

=

(
2(0.182)Eh(3

2)

Eh

)1/2

= 1.81.

4.4 We reverse the labels 1 and 2 in the function and then check to see whether the function has

changed sign: Then we find that

P̂21ψ(1, 2) = cos(−x2) cos(y1)− cos(−x1) cos(y2) = − cos(−x1) cos(y2) + cos(−x2) cos(y1) = −ψ(1, 2).

Therefore, the function is antisymmetric.

4.5 According to the arrow diagrams, we have

ml = 0 ml ms ml = −1 0 1 ml ms ML MS

1s1 ↑ 0 +1/2 2p1 ↑ −1 +1/2 −1 +1 3P

↑ 0 +1/2 ↑ 0 +1/2 0 +1 3P

↑ 0 +1/2 ↑ +1 +1/2 +1 +1 3P

↑ 0 +1/2 ↓ −1 −1/2 −1 0 3P

↑ 0 +1/2 ↓ 0 −1/2 0 0 3P

↑ 0 +1/2 ↓ +1 −1/2 +1 0 3P

↓ 0 −1/2 ↑ −1 +1/2 −1 0 1P

↓ 0 −1/2 ↑ 0 +1/2 0 0 1P

↓ 0 −1/2 ↑ +1 +1/2 +1 0 1P

↓ 0 −1/2 ↓ −1 −1/2 −1 −1 3P

↓ 0 −1/2 ↓ 0 −1/2 0 −1 3P

↓ 0 −1/2 ↓ +1 −1/2 +1 −1 3P
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where we found maximum values of L = 1 and S = 1 initially (based on the largest values of ML

and MS), and then after assigning the 9 3P states, we were left with three MS = 0 states, which gave

L = 1, S = 0 for the 1P term. Breaking the 3P into its component J values from L−S = 0 to L+S = 2,

and ordering according to Hund’s rules, the final list of states is 3P0,
3P1,

3P2,
1P1.

Chapter 5

5.1 This molecular ion has 2 nuclei with ZLi = 3 and ZH = 1 and 3 electrons, for a total of 5 particles.

That means we should have 5 kinetic energy terms (one for each particle), 6 electron–nucleus attraction

terms, 1 nucleus–nucleus repulsion term, and 3 electron–electron repulsion terms. (The total number

of potential energy terms for N particles is always N(N − 1)/2, in this case 5 · 4/2 = 10, which gives

the number of distinct pairs of particles. There is a potential energy term for each pair of interacting

particles.) Using the standard form of the kinetic energy operator for each particle and the Coulomb

potential for each pair of particles, we end up with the following:

Ĥ = − h̄2

2me

(
∇(1)2 +∇(2)2 +∇(3)2

)
+

e2

4πǫ0

[

− 3

rLi1
− 1

rH1
− 3

rLi2
− 1

rH2
− 3

rLi3
− 1

rH3

+
1

r12
+

1

r23
+

1

r13
+

3

RAB

]

− h̄2

2mLi
∇(Li)2 − h̄2

2mH
∇(H)2.

5.2 The orbital we’re constructing combines an s orbital (spherical) with a p orbital lying along the

bond axis. If we keep the same orientation of nuclei A and B with respect to the z axis direction that is

used elsewhere in the chapter, then the s and p orbitals have the same phase where they overlap, so we

will get constructive interference between the two nuclei. However, we expect a node (where the new

wavefunction will change sign) somewhere to the +z side of nucleus B, where the negative phase of the

p orbital cancels the positive phase of the exponentially decaying s orbital.

A B

5.3 The problem describes a curve such as Fig. 5.14, but a with minimum at R = 1.5 Å where the

potential energy reaches a value U = −200 kJmol−1.

−
1

(k
J 

m
ol

   
)

E

0

−200

1.5A
o

R

5.4 We can deduce from the orientation of the orbitals that (i) only the s, px, and py atomic orbitals are

involved (because the orbitals lie in the xy plane) and (ii) orbital 1 consists of only s and px character

(because it points along the x axis). All of the original px orbital density must be distributed somewhere

among all three hybrid orbitals, so if we increase the amount of px in orbital 1, then the px character

of orbitals 2 and 3 must decrease. The px orbital character tends to elongate the hybrid orbital along

the x axis. By removing that character from orbitals 2 and 3, we elongate them more along the y axis

instead, which will increase the angle between orbitals 2 and 3. (That angle approaches 180◦ in the

limit that only s and py character remains, because then you have an sp hybrid, rather than an sp2
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