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Chapter 3 

Operators 
 
 

3.1 (a)  2 2ˆ ( / ) cos( 1) 2 sin( 1);g Af d dx x x x= = + = − +     
(b)  ˆ 5̂sin 5sin ;Af x x= =     
(c)  2ˆ sin ;Af x=     
(d)  lnexp(ln ) ;xx e x= =     
(e)  2 2 2( / ) ln 3 ( / )3[1 (3 )] 1/ ;d dx x d dx x x= = −     
(f)  2 2 3 3( / 3 / )(4 ) 24 36 ;d dx x d dx x x x+ = +  
(g)  2 2( / )[sin( )] 2 cos( ).y xy xy xy∂ ∂ =  

 
3.2 (a)  Operator;   (b)  function;   (c)  function;   (d)  operator;   (e)  operator;   (f)  function. 
 
3.3 2ˆ 3 2 ( / ).A x x d dx= ⋅ +  

 
3.4 2 21̂, ( / ), ( / ).d dx d dx  

 
3.5 (a)  Some possibilities are (4/x) × and d/dx. 
 (b)  (x/2) ×, (1/4)(    )2. 
 (c)  (1/x2) ×,  (4x)–1 d/dx,  (1/12) d2/dx2. 
 
3.6 To prove that two operators are equal, we must show that they give the same result when 

they operate on an arbitrary function. In this case, we must show that ˆ ˆ( )A B f+  equals 
ˆˆ( ) .B A f+  Using the definition (3.2) of addition of operators, we have 

ˆ ˆˆ ˆ( )A B f Af Bf+ = +  and ˆ ˆ ˆˆ ˆ ˆ( ) ,B A f Bf Af Af Bf+ = + = +  which completes the proof. 
 
3.7 We have ˆ ˆˆ( )A B f Cf+ =  for all functions f,  so ˆ ˆˆAf Bf Cf+ =  and ˆ ˆ ˆ .Af Cf Bf= −  Hence 

ˆ ˆ ˆ.A C B= −  
 
3.8 (a)  2 2 2 3 4 3( / ) ( / )5 20 ;d dx x x d dx x x= =  

 (b)  2 2 2 3 2 3( / ) (6 ) 6 ;x d dx x x x x= =  

 (c)  2 2 2 2 2( / )[ ( )] ( / )(2 ) 2 4 ;d dx x f x d dx xf x f f xf x f′ ′ ′′= + = + +  
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 (d)  2 2 2 2( / ) .x d dx f x f ′′=  

 
3.9 3 3ˆ ˆ ( / )ABf x d dx f x f ′= = , so 3ˆ ˆ / .AB x d dx=  Also 3 2 3ˆˆ ( / )( ) 3 ,BAf d dx x f x f x f ′= = +  so 

2 3ˆˆ 3 /BA x x d dx= ⋅ +   

 
3.10 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[( ) ] ( )( ) [ ( )],AB C f AB Cf A B Cf= =  where (3.3) was used twice; first with Â  and B̂  in 

(3.3) replaced by ˆ ˆAB  and Ĉ , respectively, and then with f in (3.3) replaced with the 
function ˆ .Cf  Also, ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ[ ( )] [( ) ] [ ( )]A BC f A BC f A B Cf= = , which equals ˆ ˆˆ[( ) ]AB C f . 

 

3.11 (a)  2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )( ) ( )( ) ( ) ( )A B f A B A B f A B Af Bf A Af Bf B Af Bf+ = + + = + + = + + +    
(Eq. 1), where the definitions of the product and the sum of operators were used. If we 
interchange Â  and B̂  in this result, we get 2ˆˆ( )B A f+ = ˆ ˆ ˆˆ ˆ ˆ( ) ( ).B Bf Af A Bf Af+ + +  Since 
ˆ ˆˆ ˆ ,Af Bf Bf Af+ = +  we see that 2 2ˆ ˆˆ ˆ( ) ( ) .A B f B A f+ = +   

 (b)  If Â  and B̂  are linear, Eq. 1 becomes 2ˆ ˆ( )A B f+  = 2 2ˆ ˆ ˆˆ ˆ ˆA f ABf BAf B f+ + + . If 
ˆ ˆˆ ˆ ,AB BA=  then 2 2 2ˆ ˆ ˆˆ ˆ ˆ( ) 2A B f A f ABf B f+ = + + . 

 
3.12 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ] ( )A B f AB BA f ABf BAf= − = −  and ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ] ( )B A f BA AB f BAf ABf= − = − =  

ˆ ˆ[ , ] .A B f−  

 
3.13 (a)  [sin , / ] ( ) (sin )( / ) ( ) ( / )[(sin ) ( )]z d dz f z z d dz f z d dz z f z= − =      

(sin ) (cos ) (sin )z f z f z f′ ′− −  (cos ) ,z f= −  so [sin , / ] cosz d dz z= − . 

 (b)  2 2 2 2 2 2 2 2 2[ / , ] ( / )[( ) ] ( )( / )d dx ax bx c f d dx ax bx c f ax bx c d dx f+ + = + + − + +  
2 2( / )[(2 ) ( ) ] ( )d dx ax b f ax bx c f ax bx c f′ ′′= + + + + − + +
2 22 2(2 ) ( ) ( ) 2 (4 2 )af ax b f ax bx c f ax bx c f af ax b f′ ′′ ′′ ′= + + + + + − + + = + + ,  

so 2 2 2[ / , ] 2 (4 2 )( / ).d dx ax bx c a ax b d dx+ + = + +  

 (c)  2 2 2 2 2 2[ / , / ] ( / )( / ) ( / )( / ) 0d dx d dx f d dx d dx f d dx d dx f f f f′′′ ′′′= − = − = ⋅  so 
2 2[ / , / ] 0.d dx d dx =  

 
3.14 (a)  Linear;   (b)  nonlinear;   (c)  linear;   (d)  nonlinear;   (e)  linear. 
 
3.15 ( ) ( ) ( 1) ( 1)

1 1 0[ ( ) / ( ) / ( ) / ( )] ( ) ( )n n n n
n nA x d dx A x d dx A x d dx A x y x g x− −

−+ + + + =  
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3.16 Given: ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , ( ) , ( ) , ( ) ( ).A f g Af Ag A cf cAf B f g Bf Bg B cf c Bf+ = + = + = + =  
Prove: ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) , ( ) .AB f g ABf ABg AB cf cABf+ = + =  
Use of the given equations gives ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )AB f g A Bf Bg A Bf A Bg+ = + = + =  
ˆ ˆˆ ˆ ,ABf ABg+  since B̂f  and B̂g  are functions; also, ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) .AB cf A cBf cA Bf cABf= = =  

 
3.17 We have    

   

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) (defn. of sum of ops.  and )
ˆ ˆ ˆ ˆˆ( ) ( ) (linearity of )
ˆ ˆ ˆˆ (defn. of op. prod.)
ˆ ˆ ˆ ˆ ˆ ˆˆ( ) (defn. of sum of ops.  and )

A B C f A Bf Cf B C

A Bf A Cf A

ABf ACf

AB AC f AB AC

+ = +

= +

= +

= +

 

 Hence ˆ ˆ ˆ ˆ ˆˆ ˆ( ) .A B C AB AC+ = +  

 

3.18 (a)  Using first (3.9) and then (3.10), we have ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) .A bf cg A bf A cg bAf cAg+ = + = +  

 (b)  Setting b = 1 and c = 1 in (3.94), we get (3.9). Setting c = 0 in (3.94), we get (3.10). 
 
3.19 (a)  Complex conjugation, since ( )* * *f g f g+ = +  but ( )* * * *.cf c f cf= ≠  

(b)  ( )–1(d/dx)( )–1, since ( )–1(d/dx)( )–1cf = ( )–1(d/dx)c–1f – 1 =  
( )–1 1 2[ ( ) ]c f f− − ′−  = 2 /cf f ′−  and c( )–1(d/dx)( )–1f = c( )–1(d/dx)f – 1 = 

1 2( ) ( )c f f− − ′−  = 2 /cf f ′− , but  
( )–1(d/dx)( )–1(f  + g) = ( )–1(d/dx)( f  + g)–1 = –( )–1[( f  + g)–2 ( )f g′ ′+ ] =  
–( f  + g)2 1( )f g −′ ′+  ≠ ( )–1(d/dx)( )–1f + ( )–1(d/dx)( )–1g = 2 2/ /f f g g′ ′− − . 

 
3.20 (a)  This is always true since it is the definition of the sum of operators.  

(b)  Only true if Â  is linear. 
(c)  Not generally true; for example, it is false for differentiation and integration. It is true 
if Â  is multiplication by a function. 
(d)  Not generally true. Only true if the operators commute. 
(e)  Not generally true. 
(f)  Not generally true. 
(g)  True, since .fg gf=  
(h)  True, since B̂g  is a function.  

 
3.21 (a)  ˆ ˆ ˆ[ ( ) ( )] ( ) ( ) ( ) ( ).h h hT f x g x f x h g x h T f x T g x+ = + + + = +   

Also, ˆ ˆ[ ( )] ( ) ( ).h hT cf x cf x h cT f x= + =  So ĥT  is linear. 
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 (b)  2 2 2 2
1 1 1
ˆ ˆ ˆ( 3 2) ( 2) 3( 1) 2 2 1.T T T x x x x x− + = + − + + = − +  

 

3.22 ˆ 2 3ˆ ˆ( ) (1 /2! /3! ) ( ) ( ) ( ) ( )/2! ( )/3! .De f x D D D f x f x f x f x f x′ ′′ ′′′= + + + + = + + + +  

1̂ ( ) ( 1).T f x f x= +  The Taylor series (4.85) in Prob. 4.1 with x changed to z gives 
2( ) ( ) ( )( ) / 1! ( )( ) /2! .f z f a f a z a f a z a′ ′′= + − + − +  Letting ,h z a≡ −  the Taylor series 

becomes 2( ) ( ) ( ) / 1! ( ) /2! .f a h f a f a h f a h′ ′′+ = + + +  Changing a to x and letting 

1,h =  we get ( 1) ( ) ( ) / 1! ( )/2! ,f x f x f x f x′ ′′+ = + + +  which shows that ˆ
1̂ .De f T f=  

 

3.23 (a)  2 2( / ) x xd dx e e=  and the eigenvalue is 1. 

 (b)  2 2 2( / ) 2d dx x =  and 2x  is not an eigenfunction of 2 2/d dx . 

 (c)  2 2( / ) sin ( / ) cos sind dx x d dx x x= = −  and the eigenvalue is –1. 

 (d)  2 2( / )3cos 3cosd dx x x= −  and the eigenvalue is –1. 

 (e)  2 2( / )(sin cos ) (sin cos )d dx x x x x+ = − +  so the eigenvalue is –1. 

 

3.24 (a)  2 2 2 2 2 3 2 3 2 3 2 3( / / )( ) 4 9 13 .x y x y x y x yx y e e e e e e e e∂ ∂ + ∂ ∂ = + =  The eigenvalue is 13. 
(b)  2 2 2 2 3 3 3 3( / / )( ) 6 6 .x y x y xy x y∂ ∂ + ∂ ∂ = +  Not an eigenfunction. 
(c)  

2 2 2 2( / / )(sin 2 cos 4 ) 4sin 2 cos 4 16sin 2 cos 4 20sin 2 cos 4 .x y x y x y x y x y∂ ∂ + ∂ ∂ = − − = −  
The eigenvalue is 20.−  
(d)  2 2 2 2( / / )(sin 2 cos3 ) 4sin 2 9cos3 .x y x y x y∂ ∂ + ∂ ∂ + = − −  Not an eigenfunction, 

 

3.25 2 2 2( /2 )( / ) ( ) ( )m d dx g x kg x− =  and 2( ) (2 / ) ( ) 0.g x m kg x′′ + =  This is a linear 
homogenous differential equation with constant coefficients. The auxiliary equation is 

2 2(2 / ) 0s m k+ =  and 1/2(2 ) / .s i mk= ±  The general solution is 
1/2 1/2(2 ) / (2 ) /

1 2 .i mk x i mk xg c e c e−= +  If the eigenvalue k were a negative number, then 1/2k  

would be a pure imaginary number; that is, 1/2 ,k ib=  where b is real and positive. This 
would make 1/2ik  a real negative number and the first exponential in g would go to ∞ as 
x → −∞  and the second exponential would go to ∞ as .x →∞  Likewise, if k were an 
imaginary number ( ,ik a bi re θ= + =  where a and b are real and b is nonzero), then 1/2k  
would have the form ,c id+  and 1/2ik  would have the form ,d ic− +  where c and d are 
real. This would make the exponentials go to infinity as x goes to plus or minus infinity. 
Hence to keep g finite as ,x → ±∞  the eigenvalue k must be real and nonnegative, and the 
allowed eigenvalues are all nonnegative numbers. 
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3.26 ( ) .dx f f dx kf= =∫ ∫  Differentiation of both sides of this equation gives 
( / ) .d dx f dx f kf ′= =∫  So 1/df dx k f−=  and 1(1/ ) .f df k dx−=  Integration gives 

1ln f k x c−= +  and / / ,c x k x kf e e Ae= =  where A is a constant and k is the eigenvalue. To 
prevent the eigenfunctions from becoming infinite as ,x → ±∞  k must be a pure 
imaginary number. (Strictly speaking, /x kAe  is an eigenfunction of dx∫  only if we omit 
the arbitrary constant of integration.) 

 
3.27 2 2/ 2 /d f dx df dx kf+ =  and 2 0.f f kf′′ ′+ − =  The auxiliary equation is 2 2 0s s k+ − =  

and 1/21 (1 ) .s k= − ± +  So 
1/2 1/2[ 1 (1 ) ] [ 1 (1 ) ] ,k x k xf Ae Be− + + − − += +  where A and B are arbitrary 

constants. To prevent the eigenfunctions from becoming infinite as ,x → ±∞  the factors 
multiplying x must be pure imaginary numbers: 1/21 (1 ) ,k ci− ± + =  where c is an arbitrary 
real number. So 1/2(1 ) 1k ci± + = +  and 21 (1 )k ci+ = + = 21 2ic c+ −  and 22 .k ic c= −  

 

3.28 (a)  3 3 3 3 3 3ˆ ( / ) ( / ) /yp i y i y= ∂ ∂ = ∂ ∂ ;    

 (b)  ˆ ˆ ˆ ˆ ( / ) / ( / ) / ;y xxp yp x i y y i x− = ∂ ∂ − ∂ ∂  

 (c)  2 2[ ( / ) / ] ( , ) ( / )( / )x i y f x y x y x f y∂ ∂ = − ∂ ∂ ∂ ∂ = 2 2 2 2( / ).x f y− ∂ ∂   
Hence 2 2 2 2 2ˆˆ( ) ( / ).yxp x y= − ∂ ∂  

 
3.29 ( / )( / )i dg dx kg=  and / ( / ) .dg g ik dx=  Integration gives ln ( / )g ik x C= +  and 

/ / ,ikx C ikxg e e Ae= =  where C and A are constants. If k were imaginary ( ,k a bi= +  
where a and b are real and b is nonzero), then ,ik ia b= −  and the /bxe−  factor in g makes 
g go to infinity as x goes to minus infinity if b is positive or as x goes to infinity if b is 
negative. Hence b must be zero and ,k a=  where a is a real number. 

 
3.30 (a)  ˆ ˆ[ , ] ( / )[ / ( / ) ] ( / )[ / ( / )( )]xx p f i x x x x f i x f x x xf= ∂ ∂ − ∂ ∂ = ∂ ∂ − ∂ ∂ =  

( / )[ / / ] ( / ) ,i x f x f x f x i f∂ ∂ − − ∂ ∂ = −  so ˆ ˆ[ , ] ( / ).xx p i= −  

 (b)  2 2 2 2 2 2 2 2 2 2 2ˆ ˆ[ , ] ( / ) [ / ( / ) ] [ / ( / )( )]xx p f i x x x x f x f x x xf= ∂ ∂ − ∂ ∂ = − ∂ ∂ − ∂ ∂ =  
2 2 2 2 2 2[ / / 2 / ] 2 / .x f x x f x f x f x− ∂ ∂ − ∂ ∂ − ∂ ∂ = ∂ ∂  Hence 2 2ˆ ˆ[ , ] 2 / .xx p x= ∂ ∂  

 (c)  ˆ ˆ[ , ] ( / )[ / ( / ) ] ( / )[ / ( / )] 0yx p f i x y y x f i x f y x f y= ∂ ∂ − ∂ ∂ = ∂ ∂ − ∂ ∂ = , so ˆ ˆ[ , ] 0yx p = . 

 (d)  ˆˆ[ , ( , , )] ( ) 0.x V x y z f xV Vx f= − =  

 (e)  Let 2 /2 .A m≡ −  Then ˆˆ[ , ]x H f =  

{ }2 2 2 2 2 2 2 2 2 2 2 2[ ( / / / ) ] [ ( / / / ) ]x A x y z V A x y z V x f∂ ∂ + ∂ ∂ + ∂ ∂ + − ∂ ∂ + ∂ ∂ + ∂ ∂ + =  
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2 2 2 2 2 2 2 2 2 2 2 2[ / / / / 2 / / / ]A x f x x f y x f z x f x f x x f y x f z∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ +  
22 / ( / ) / ,xAVf AVxf A f x m f x− = − ∂ ∂ = ∂ ∂  so 2ˆˆ[ , ] ( / ) / .x H m x= ∂ ∂  

 (f)  2ˆˆ ˆˆ[ , ]xxyz p f =  
2 2 2 2 2 2 2 2 2 2[ / ( / )( )] [ / / 2 / ]xyz f x x xyzf xyz f x xyz f x yz f x− ∂ ∂ − ∂ ∂ = − ∂ ∂ − ∂ ∂ − ∂ ∂ =  
22 / ,yz f x∂ ∂  so 2 2ˆˆ ˆˆ[ , ] 2 / .xxyz p yz x= ∂ ∂  

 

3.31 
2 2 2 2 2 2 2 2

2 2 2 2 2 2
1 21 1 1 2 2 2

ˆ
2 2

T
m mx y z x y z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= − + + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

 

3.32  2 2 2 2 2ˆ ( /2 ) ( ),H m c x y z= − ∇ + + +  where 2 2 2 2 2 2 2/ / / .x y z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  

 

3.33 (a)  
2 2
0 | ( , ) |x t dx∫ Ψ ; 

 (b)  2 2
0 | ( , , , ) |x y z t dx dy dz∞ ∞

−∞ −∞∫ ∫ ∫ Ψ ; 

 (c)  2 2
0 1 1 1 2 2 2 1 1 1 2 2 2| ( , , , ,  ,  ,  )|x y z x y z t dx dy dz dx dy dz∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞∫ ∫ ∫ ∫ ∫ ∫ Ψ . 

 
3.34 (a)  2| | dxψ  is a probability and probabilities have no units. Since dx has SI units of m, 

the SI units of ψ  are m–1/2. 

 (b)  To make 2| | dx dy dzψ  dimensionless, the SI units of ψ  are m–3/2. 

 (c)  To make 2
1 1 1| | n n ndx dy dz dx dy dzψ  dimensionless, the SI units of ψ  are m–3n/2. 

 
3.35 Let the x, y, and z directions correspond to the order used in the problem to state the edge 

lengths. The ground state has x y zn n n  quantum numbers of 111.  The first excited state 

has one quantum number equal to 2. The quantum-mechanical energy decreases as the 
length of a side of the box increases. Hence in the first excited state, the quantum-number 
value 2 is for the direction of the longest edge, the z direction. Then 

2 2 2 2 2 2 2 2

2 2 2 2 2 2
1 1 2 1 1 1

8 8
h hh
m ma b c a b c

ν
⎛ ⎞ ⎛ ⎞

= + + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

34
14 1

2 31 10 2
3 3(6.626 10  J s) 7.58 10  s

8 8(9.109 10  kg)(6.00 10  m)
h

mc
ν

−
−

− −
×

= = = ×
× ×

 

 

3.36 (a)  Use of Eqs. (3.74) and (A.2) gives 3.00 nm 2.00 nm 0.40 nm 2
2.00 nm 1.50 nm 0 | | dx dy dzψ =∫ ∫ ∫  

0.40 nm 2
0 (2/ )sin ( / )a x a dxπ∫ 2.00 nm 2

1.50 nm (2/ )sin ( / )b y b dyπ∫ 3.00 nm 2
2.00 nm (2/ )sin ( / )c z c dzπ∫ =  
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0.40 nm 2.00 nm 3.00 nm

0 1.50 nm 2.00 nm

sin(2 / ) sin(2 / ) sin(2 / )
2 2 2

x x a y y b z z c
a b c

π π π
π π π

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 = 

0.40 sin(2 0.40/1.00) 2.00 1.50 sin(2 2.00/2.00) sin(2 1.50/2.00)
1.00 2 2.00 2

π π π
π π

⋅ − ⋅ − ⋅⎡ ⎤ ⎡ ⎤− − ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
3.00 2.00 sin(2 3.00/5.00) sin(2 2.00/5.00)

5.00 2
π π

π
− ⋅ − ⋅⎡ ⎤−⎢ ⎥⎣ ⎦

 =  

(0.3065)(0.09085)(0.3871) = 0.0108. 
(b) The y and z ranges of the region include the full range of y and z, and the y and z 
factors in ψ are normalized. Hence the y and z integrals each equal 1. The x integral is the 
same as in part (a), so the probability is 0.3065. 
(c) The same as (b), namely, 0.3065. 

 
3.37 ˆ / .xp i x= − ∂ ∂   (a)  (sin )/ cos ,kx x k kx∂ ∂ =  so ψ is not an eigenfunction of ˆ .xp  

 (b)  2 2 2 2 2 2
(3.73) (3.73) (3.73)ˆ ( / ) ( 1)( / )x xp x n aψ ψ π ψ= − ∂ ∂ = − − , where (3.73)ψ  is given by  

Eq. (3.73). The eigenvalue is 2 2 2/4 ,xh n a  which is the value observed if 2
xp  is measured. 

 (c)  2 2 2 2 2 2
(3.73) (3.73) (3.73)ˆ ( / ) ( 1)( / )z zp z n cψ ψ π ψ= − ∂ ∂ = − −  and the observed value is 

2 2 2/4 .zh n c  

 (d)  (3.73) (3.73) (3.73)ˆ (const.)x xψ ψ ψ= ≠ , so ψ is not an eigenfunction of ˆ.x  

 
3.38 Since 2,yn =  the plane /2y b=  is a nodal plane within the box; this plane is parallel to 

the xz plane and bisects the box. With 3,zn =  the function sin(3 / )z cπ  is zero on the nodal 
planes /3z c=  and 2 /3;z c=  these planes are parallel to the xy plane.  

 
3.39 (a)  2| |ψ  is a maximum where | |ψ  is a maximum. We have ( ) ( ) ( ) .f x g y h zψ =  For 

1,xn =  1/2( ) (2/ ) sin( / )f x a x aπ=  is a maximum at /2.x a=  Also, ( )g y  is a maximum 

at /2y b=  and ( )h z  is a maximum at /2.z c=  Therefore ψ  is a maximum at the point 
( /2, /2, /2),a b c  which is the center of the box. 

 (b)  1/2( ) (2/ ) sin(2 / )f x a x aπ=  is a maximum at /4x a=  and at 3 /4.x a=  ( )g y  is a 

maximum at /2y b=  and ( )h z  is a maximum at /2.z c=  Therefore ψ  is a maximum at 
the points ( /4, /2, /2)a b c  and (3 /4, /2, /2),a b c  

 
3.40 When integrating over one variable, we treat the other two variables as constant; hence   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )F x G y H z dx dy dz F x G y H z dx dy dz G y H z F x dx dy dz⎡ ⎤ ⎡ ⎤= =∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫⎣ ⎦ ⎣ ⎦
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( ) ( ) ( ) ( ) ( ) ( )F x dx G y H z dy dz F x dx H z G y dy dz⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =∫ ∫ ∫ ∫ ∫ ∫⎣ ⎦ ⎣ ⎦ ⎣ ⎦
( ) ( ) ( )F x dx G y dy H z dz∫ ∫ ∫ . 

3.41 If the ratio of two edge lengths is exactly an integer, we have degeneracy. For example, if 
b = ka, where k is an integer, then 2 2 2 2 2 2 2 2/ / ( / )/x y x yn a n b n n k a+ = + . The ( , , )x y zn n n  
states (1, 2 , )zk n  and (2, , )zk n  have the same energy. 

 

3.42 With V = 0, we have 
2 2 2 2

2 2 22
E

m x y z
ψ ψ ψ ψ

⎛ ⎞∂ ∂ ∂
− + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

. Assume 

( , , ) ( ) ( ) ( ).x y z F x G y H zψ =  Substitution into the Schrödinger equation followed by 

division by FGH, gives 
2 2 2 2

2 2 2
1 1 1

2
d F d G d H E

m F G Hdx dy dz
⎛ ⎞

− + + =⎜ ⎟⎜ ⎟
⎝ ⎠

 and 

2 2 2 2 2

2 2 2
1 1 1

2 2
d F d G d HE

m F m G Hdx dy dz
⎛ ⎞ ⎛ ⎞

− = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (Eq. 1).   Let 
2 2

2
1 .

2x
d FE

m F dx
⎛ ⎞

≡ − ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Then, since F is a function of x only, xE  is independent of y and z. But Eq. 1 shows xE  is 
equal to the right side of Eq. 1, which is independent of x, so xE  is independent of x. 

Hence xE  is a constant and 2 2 2( /2 )( / ) .xm d F dx E F− =  This is the same as the one-
dimensional free-particle Schrödinger equation (2.29), so F(x) and xE  are given by (2.30) 
and (2.31). By symmetry, G and H are given by (2.30) with x replaced by y and by z, 
respectively. 

 
3.43 For a linear combination of eigenfunctions of Ĥ  to be an eigenfunction of Ĥ , the 

eigenfunctions must have the same eigenvalue. In this case, they must have the same 
value of 2 2 2.x y zn n n+ +  The functions (a) and (c) are eigenfunctions of Ĥ  and (b) is not. 

 

3.44 In addition to the 11 states shown in the table after Eq. (3.75), the following 6 states have 
2 2(8 / ) 15 :E ma h <  

x y zn n n  123 132 213 231 312 321 
2 2(8 / )E ma h  14 14 14 14 14 14 

 These 6 states and the 11 listed in the textbook give a total of 17 states. These 17 states 
have 6 different values of 2 2(8 / )E ma h , and there are 6 energy levels. 

 
3.45 (a)  From the table after Eq. (3.75), there is only one state with this value, so the degree of 

degeneracy is 1, meaning this level is nondegenerate. 
 (b)  From the table in the Prob. 3.44 solution, the degree of degeneracy is 6. 
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 (c)  The following x y zn n n  values have 2 2(8 / )E ma h  = 27;  115, 151, 511, 333. The degree 

of degeneracy is 4. 
3.46 (a)  These are linearly independent since none of them can be written as a linear 

combination of the others. 

(b)  Since 2 2 1
83 1 3( ) (8),x x− = −  these are not linearly independent. 

(c)  Linearly independent. 
(d)  Linearly independent. 
(e)  Since cos sin ,ixe x i x= +  these are linearly dependent. 

(f)  Since 2 21 sin cos ,x x= +  these are linearly dependent. 

(g)  Linearly independent. 
 
3.47 See the beginning of Sec. 3.6 for the proof. 
 

3.48 (a)  2 2 2
0 0 0 | ( ) | | ( ) | | ( ) |c b ax x f x g y h z dx dy dz〈 〉 = ∫ ∫ ∫ =  
2 2 2

0 0 0| ( ) | | ( ) | | ( ) | ,ca bx f x dx g y dy h z dz∫ ∫ ∫ where f, g, and h are given preceding Eq. 

(3.72). Since g and h are normalized, 2 2
0 0| ( ) | (2/ ) sin ( / )aa

xx x f x dx a x n x a dxπ〈 〉 = ∫ = ∫  = 

2 2

2 2
0

2 sin(2 / ) cos(2 / )
4 4 28

a

x x
x x

x ax a an x a n x a
a n n

π π
π π

⎡ ⎤
− − =⎢ ⎥

⎣ ⎦
, where Eq. (A.3) was used. 

 (b)  By symmetry, /2y b〈 〉 =  and /2.z c〈 〉 =  

 (c)  The derivation of Eq. (3.92) for the ground state applies to any state, and 0.xp〈 〉 =  

 (d)  Since g and h are normalized, 
2 2 2 2 2

0 0| ( ) | (2/ ) sin ( / )aa
xx x f x dx a x n x a dxπ〈 〉 = ∫ = ∫ =

3 2 3 2

3 3 2 2
0

2 sin(2 / ) cos(2 / )
6 4 8 4

a

x x
x x x

x ax a a xn x a n x a
a n n n

π π
π π π

⎡ ⎤⎛ ⎞
− − − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2 2

2 23 2 x

a a
n π

− ,  

where Eq. (A.4) was used. We have 2 2 2/4 .x a x〈 〉 = ≠ 〈 〉  Also, 
2 2 2

0 0 0 | ( ) | | ( ) | | ( ) |c b axy xy f x g y h z dx dy dz〈 〉 = ∫ ∫ ∫ =
2 2 2

0 0 0| ( ) | | ( ) | | ( ) |ca bx f x dx y g y dy h z dz∫ ∫ ∫  = .x y〈 〉〈 〉  

 

3.49 ˆ ˆ ˆˆ ˆ ˆ*( ) *( ) * *A B A B d A B d A d B dτ τ τ τ〈 + 〉 = Ψ + Ψ = Ψ Ψ + Ψ = Ψ Ψ + Ψ Ψ =∫ ∫ ∫ ∫  

.A B〈 〉 + 〈 〉   Also ˆ ˆ*( ) * .cB cB d c B d c Bτ τ〈 〉 = Ψ Ψ = Ψ Ψ = 〈 〉∫ ∫  
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3.50 (a)  Not acceptable, since it is not quadratically integrable. This is obvious from a graph or 
from 2 2(1/2 ) | .ax axe dx a e∞ − − ∞

−∞ −∞∫ = − = ∞  

 (b)  This is acceptable, since it is single-valued, continuous, and quadratically integrable 
when multiplied by a normalization constant. See Eqs. (4.49) and (A.9). 

 (c)  This is acceptable, since it is single-valued, continuous, and quadratically integrable 
when multiplied by a normalization constant. See Eqs. (4.49) and (A.10) with n = 1. 

 (d)  Acceptable for the same reasons as in (b). 
 (e)  Not acceptable since it is not continuous at x = 0. 
 

3.51 Given: 1 1
ˆ/i t H∂Ψ ∂ = Ψ  and 2 2

ˆ/i t H∂Ψ ∂ = Ψ . Prove that 

1 1 2 2 1 1 2 2
ˆ( ) / ( )i c c t H c c∂ Ψ + Ψ ∂ = Ψ + Ψ . We have 1 1 2 2( ) /i c c t∂ Ψ + Ψ ∂ =  

1 1 2 2[ ( ) / ( ) / ]i c t c t∂ Ψ ∂ + ∂ Ψ ∂ = 1 1 2 2/ /c i t c i t∂Ψ ∂ + ∂Ψ ∂ = 1 1 2 2
ˆ ˆc H c HΨ + Ψ =

1 1 2 2
ˆ ( )H c cΨ + Ψ , since Ĥ  is linear.  

 
3.52 (a)  An inefficient C++ program is 
 
  #include <iostream> 
  using namespace std; 
  int main() { 
   int  m, i, j, k, nx, ny, nz, L[400], N[400], R[400], S[400]; 
   i=0; 
   for (nx=1; nx<8; nx=nx+1) { 
    for (ny=1; ny<8; ny=ny+1) { 
     for (nz=1; nz<8; nz=nz+1) { 
      m=nx*nx+ny*ny+nz*nz; 
      if (m>60) 
       continue; 
      i=i+1; 
      L[i]=m; 
      N[i]=nx; 
      R[i]=ny; 
      S[i]=nz; 
     } 
    } 
   } 
   for (k=3; k<61; k=k+1) { 
    for (j=1; j<=i; j=j+1) { 
     if (L[j]==k) 
      cout<<N[j]<< " "<<R[j]<< " "<<S[j]<< " "<<L[j]<<endl; 
    } 
   } 
   return 0;  
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  } 
 
   A free integrated development environment (IDE) to debug and run C++ programs is  
  Code::Blocks, available at www.codeblocks.org. For a Windows computer, downloading  
  the file with mingw-setup.exe as part of the name will include the MinGW (GCC) compiler  
  for C++. Free user guides and manuals for Code::Blocks can be found by searching the  
  Internet.  
   Alternatively, you can run the program at ideone.com. 
 (b)  One finds 12 states. 
 
3.53 (a)  T.   (b)  F.  See the paragraph preceding the example at the end of Sec. 3.3. 
 (c)  F. This is only true if f1 and f2 have the same eigenvalue. 
 (d)  F.   (e)  F. This is only true if the two solutions have the same energy eigenvalue. 
 (f)  F. This is only true for stationary states. 
 (g)  F.   (h)  F.  (5 ) (const.)(5 ).x x x≠  

 (i)  T.  / / /ˆ ˆ ˆ( ) .iEt iEt iEtH H e e H Ee Eψ ψ ψ− − −Ψ = = = = Ψ  

 (j)  T.   (k)  T.   (l)  F. 

 (m)  T.  2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ,A f A Af A af aAf a f= = = =  provided Â  is linear. Note that the 
definition of eigenfunction and eigenvalue in Sec. 3.2 specified that Â  is linear. 

 (n)  F.   (o)  F. 
 


