
CHAPTER 1

The Celestial Sphere

1.1 From Fig. 1.7, Earth makes S=P˚ orbits about the Sun during the time required for another planet to make
S=P orbits. If that other planet is a superior planet then Earth must make one extra trip around the Sun to
overtake it, hence

S

P˚
D

S

P
C 1:

Similarly, for an inferior planet, that planet must make the extra trip, or
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Rearrangement gives Eq. (1.1).

1.2 For an inferior planet at greatest elongation, the positions of Earth (E), the planet (P ), and the Sun (S) form
a right triangle (∠EPS D 90ı). Thus cos.∠PES/ D EP=ES .

From Fig. S1.1, the time required for a superior planet to go from opposition (pointP1) to quadrature (P2) can
be combined with its sidereal period (from Eq. 1.1) to find the angle∠P1SP2. In the same time interval Earth
will have moved through the angle∠E1SE2. Since P1,E1, and S form a straight line, the angle ∠P2SE2 D
∠E1SE2 � ∠P1SP2. Now, using the right triangle at quadrature,P2S=E2S D 1= cos.∠P2SE2/.
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Figure S1.1: The relationship between synodic and sidereal periods for superior planets, as discussed in Problem 1.2.

1.3 (a) PVenus D 224:7 d, PMars D 687:0 d

(b) Pluto. It travels the smallest fraction of its orbit before being “lapped” by Earth.

1.4 Vernal equinox: ˛ D 0h, ı D 0ı

Summer solstice: ˛ D 6h, ı D 23:5ı

Autumnal equinox: ˛ D 12h, ı D 0ı

Winter solstice: ˛ D 18h, ı D �23:5ı
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2 Chapter 1 The Celestial Sphere

1.5 (a) .90ı � 42ı/C 23:5ı D 71:5ı

(b) .90ı � 42ı/� 23:5ı D 24:5ı

1.6 (a) 90ı � L < ı < 90ı

(b) L > 66:5ı

(c) Strictly speaking, only at L D ˙90ı. The Sun will move along the horizon at these latitudes.

1.7 (a) Both the year 2000 and the year 2004 were leap years, so each had 366 days. Therefore, the number of
days between January 1, 2000 and January 1, 2006 is 2192 days. From January 1, 2006 to July 14, 2006
there are 194 days. Finally, from noon on July 14, 2006 to 16:15 UT is 4.25 hours, or 0.177 days. Thus,
July 14, 2006 at 16:15 UT is JD 2453931.177.

(b) MJD 53930.677.

1.8 (a) �˛ D 9m53:55s D 2:4731ı, �ı D 2ı9016:200 D 2:1545ı. From Eq. (1.8),�
 D 2:435ı.

(b) d D r �
 D 1:7 � 1015 m D 11,400 AU.

1.9 (a) From Eqs. (1.2) and (1.3), �˛ D 0:193628ı D 0:774512m and �ı D �0:044211ı D �2:652660. This
gives the 2010.0 precessed coordinates as ˛ D 14h30m29:4s, ı D �62ı43025:2600.

(b) From Eqs. (1.6) and (1.7), �˛ D �5:46s and �ı D 7:98400.

(c) Precession makes the largest contribution.

1.10 In January the Sun is at a right ascension of approximately 19h. This implies that a right ascension of roughly
7h is crossing the meridian at midnight. With about 14 hours of darkness this would imply observations of
objects between right ascensions of 0 h and 14 h would be crossing the meridian during the course of the
night (sunset to sunrise).

1.11 Using the identities, cos.90ı � t/ D sin t and sin.90ı � t/ D cos t , together with the small-angle approxima-
tions cos�
 � 1 and sin�
 � 1, the expression immediately reduces to

sin.ı C�ı/ D sin ı C�
 cos ı cos 
:

Using the identity sin.aC b/ D sina cos b C cos a sinb, the expression now becomes

sin ı cos�ıC cos ı sin�ı D sin ıC�
 cos ı cos 
:

Assuming that cos�ı � 1 and sin�ı � �ı, Eq. (1.7) is obtained.



CHAPTER 2

Celestial Mechanics

2.1 From Fig. 2.4, note that

r 2 D .x � ae/2 C y2 and r 0
2 D .x C ae/2 C y2:

Substituting Eq. (2.1) into the second expression gives

r D 2a�
q
.x C ae/2 C y2

which is now substituted into the first expression. After some rearrangement,

x2

a2
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a2.1 � e2/
D 1:

Finally, from Eq. (2.2),
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D 1:

2.2 The area integral in Cartesian coordinates is given by
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a2 � x2 dx D �ab:

2.3 (a) From Eq. (2.3) the radial velocity is given by

vr D
dr

dt
D

a.1 � e2/

.1C e cos 
/2
e sin


d


dt
: (S2.1)

Using Eqs. (2.31) and (2.32)
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:

The angular momentum can be written in terms of the orbital period by integrating Kepler’s second law.
If we further substituteA D �ab and b D a.1 � e2/1=2 then

L D 2
�a2.1 � e2/1=2=P :

SubstitutingL and r into the expression for d
=dt gives

d


dt
D

2�.1C e cos 
/2

P .1 � e2/3=2
:

This can now be used in Eq. (S2.1), which simplifies to

vr D
2�ae sin

P .1 � e2/1=2

:

Similarly, for the transverse velocity

v� D r
d


dt
D

2�a.1C e cos 
/
.1� e2/1=2P

:
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(b) Equation (2.36) follows directly from v2 D v2r C v2
�
, Eq. (2.37) (Kepler’s third law), and Eq. (2.3).

2.4 The total energy of the orbiting bodies is given by

E D
1
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1 C

1

2
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2
2 � G

m1m2

r

where r D jr2 � r1j. Now,

v1 D Pr1 D �
m2

m1 Cm2
Pr and v2 D Pr2 D

m1

m1 Cm2
Pr :

Finally, usingM D m1 Cm2, 
 D m1m2= .m1 Cm2/, and m1m2 D 
M , we obtain Eq. (2.25).

2.5 Following a procedure similar to Problem 2.4,

L D m1r1 � v1 Cm2r2 � v2
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2.6 (a) The total orbital angular momentum of the Sun–Jupiter system is given by Eq. (2.30). Referring to the
data in Appendicies A and C, Mˇ D 1:989 � 1030 kg, MJ D 1:899 � 1027 kg, M D MJ CMˇ D
1:991 � 1030 kg, and 
 D MJMˇ= .MJ CMˇ/ D 1:897 � 1027 kg. Furthermore, e D 0:0489,
a D 5:2044 AU D 7:786 � 1011 m. Substituting,

Ltotal orbit D 


q
GMa

�
1 � e2

�
D 1:927 � 1043 kg m2 s	1:

(b) The distance of the Sun from the center of mass is aˇ D 
a=Mˇ D 7:426 � 108 m. The Sun’s orbital
speed is vˇ D 2�aˇ=PJ D 12:46 m s	1, where PJ D 3:743 � 108 s is the system’s orbital period.
Thus, for an assumed circular orbit,

LSun orbit DMˇaˇvˇ D 1:840 � 1040 kg m2 s	1:

(c) The distance of Jupiter from the center of mass is aJ D 
a=MJ D 7:778 � 1011 m, and its orbital
speed is vJ D 2�aJ =PJ D 1:306 � 104 m s	1. Again assuming a circular orbit,

LJupiter orbit DMJ aJ vJ D 1:929 � 1043 kg m2 s	1:

This is in good agreement with

Ltotal orbit � LSun orbit D 1:925 � 1043 kg m2 s	1:

(d) The moment of inertia of the Sun is approximately

Iˇ �
2

5
MˇR

2
ˇ � 3:85 � 1047 kg m2

and the moment of inertia of Jupiter is approximately

IJ �
2

5
MJR

2
J � 3:62 � 1042 kg m2:
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(Note: Since the Sun and Jupiter are centrally condensed, these values are overestimates; see Sec-
tion 23.2.) Using ! D 2�=P ,

LSun rotate D 1:078 � 1042 kg m2 s	1

LJupiter rotate D 6:312 � 1038 kg m2 s	1:

(e) Jupiter’s orbital angular momentum.

2.7 (a) vesc D
p
2GMJ =RJ D 60:6 km s	1

(b) vesc D
p
2GMˇ=1 AU D 42:1 km s	1.

2.8 (a) From Kepler’s third law (Eq. 2.37) with a D R˚ C h D 6:99� 106 m, P D 5820 s D 96:9 min.

(b) The orbital period of a geosynchronous satellite is the same as Earth’s sidereal rotation period, or P D
8:614�104 s. From Eq. (2.37), a D 4:22�107m, implying an altitude of h D a�R˚ D 3:58�107m D
5:6 R˚.

(c) A geosynchronous satellite must be “parked” over the equator and orbiting in the direction of Earth’s
rotation. This is because the center of the satellite’s orbit is the center of mass of the Earth–satellite
system (essentially Earth’s center).

2.9 The integral average of the potential energy is given by

hU i D 1

P

Z P

0

U.t/dt D � 1

P

Z P

0

GM


r .t/
dt:

Using Eqs. (2.31) and (2.32) to solve for dt in terms of d
 , and making the appropriate changes in the limits
of integration,

hU i D �
1

P

Z 2�

0

GM
2r

L
d
:

Writing r in terms of 
 via Eq. (2.3) leads to

hU i D �
GM
2a

�
1 � e2

�

PL

Z 2�

0

d


1C e cos 


D �
2�GM
2a

�
1 � e2

�1=2

PL
:

Using Eq. (2.30) to eliminate the total orbital angular momentum L, and Kepler’s third law (Eq. 2.37) to
replace the orbital period P , we arrive at

hU i D �G
M


a
:

2.10 Using the integral average from Problem 2.9

hr i D
1

P

Z P

0

r .t/dt:

Using substitutions similar to the solution of Problem 2.9 we eventually arrive at

hri D
a

2�

�
1 � e2

�5=2 Z 2�

0

d


.1C e cos 
/3
: (S2.2)

It is evident that for e D 0, hr i D a, as expected for perfectly circular motion. However, hr i deviates from
a for other values of e. This function is most easily evaluted numerically. Employing a simple trapezoid
method with 106 intervals, gives the results shown in Table S2.1.


